DeepSeek-R1/Zero、RL GRPO以及蒸馏过程详解

重磅推荐专栏:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

1. 训练方案

1.1 LLM通用训练方案

大型语言模型(LLM)的训练过程可以分为三个主要步骤,每个步骤都有其独特的目标和方法。让我们用一个简单的比喻来解释这个过程:

### DeepSeek-R1-Zero 强化学习 RL 介绍 #### 模型背景与发展历程 DeepSeek-R1-Zero 是一项大胆的实验成果,旨在探索仅依靠强化学习(RL)而无需任何初始监督微调(SFT)的情况下训练模型的可能性。这种设计打破了传统的依赖大量标注数据来提升模型性能的做法[^1]。 #### 训练机制概述 研究显示,大规模强化学习可以显著提高模型的推理能力,即使是在没有任何监督微调的前提下也能实现有效的冷启动。对于 DeepSeek-R1-Zero 而言,其核心在于直接基于基础架构实施强化学习算法,从而让模型能够自主地优化决策过程并逐步改善自身的预测精度[^2]。 #### 关键技术要素 - **无监督预热阶段**:完全跳过了传统意义上的监督式预训练环节; - **纯RL驱动的学习路径**:利用环境反馈信号指导参数调整方向; - **GRPO 算法框架**:采用特定于任务需求定制化的数学结构支持整个训练流程; ```python import gymnasium as gym from stable_baselines3 import PPO, A2C env = gym.make('CartPole-v1') model = PPO('MlpPolicy', env) def train_model(model, timesteps=10_000): model.learn(total_timesteps=timesteps) train_model(model) ``` 此代码片段展示了如何使用 Python 和 Stable Baselines 库中的代理程序(如 PPO 或者 A2C),在一个简单的 Gym 环境下执行类似的强化学习策略。这只是一个简化版的例子用于说明目的,在实际应用中 DeepSeek-R1-Zero 将涉及更复杂的场景和更高维度的状态空间处理逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小爷毛毛(卓寿杰)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值