数据工程师面临的压力:AI大模型LLM驱动下的数据处理(ETL与大型语言模型)

提取、转换和加载(ETL)流程是现代数据管道的核心,它帮助组织迁移和处理大量数据,用于分析、AI 应用和商业智能(BI)。传统的 ETL 明确基于规则,需要大量手动配置来处理不同的数据格式。

然而,随着大型语言模型(LLMs)的最新趋势,我们开始看到变革性的 AI 驱动 ETL 用于数据提取和集成。
在这里插入图片描述

ETL 的演变:从基于规则到基于 AI

多年来,企业一直使用 ETL 工具来处理结构化和半结构化数据。通常,它们遵循某些规则和模式定义来丰富数据,这在数据格式不断变化时可能是一个限制。一些传统的 ETL 挑战包括:

  • 手动模式定义:传统 ETL 中的预处理和模式定义需要时间,会减慢整体数据工作流。
  • 复杂的数据源:易于集成结构化数据库,但难以处理非结构化文档(PDF、电子邮件或日志)。
  • 可扩展性限制:基于规则的 ETL 系统难以适应不同类型的数据领域和数据源,最终需要大量定制。

这就是为什么基于 LLM 的 ETL 解决了这些限制,并带来了上下文智能、适应性和自动化。

LLM 如何改变 ETL 游戏

无模式提取

无模式或非结构化的 LLM 可以动态从非结构化来源提取相关信息。AI 模型理解上下文线索&#

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值