提取、转换和加载(ETL)流程是现代数据管道的核心,它帮助组织迁移和处理大量数据,用于分析、AI 应用和商业智能(BI)。传统的 ETL 明确基于规则,需要大量手动配置来处理不同的数据格式。
然而,随着大型语言模型(LLMs)的最新趋势,我们开始看到变革性的 AI 驱动 ETL 用于数据提取和集成。
ETL 的演变:从基于规则到基于 AI
多年来,企业一直使用 ETL 工具来处理结构化和半结构化数据。通常,它们遵循某些规则和模式定义来丰富数据,这在数据格式不断变化时可能是一个限制。一些传统的 ETL 挑战包括:
- 手动模式定义:传统 ETL 中的预处理和模式定义需要时间,会减慢整体数据工作流。
- 复杂的数据源:易于集成结构化数据库,但难以处理非结构化文档(PDF、电子邮件或日志)。
- 可扩展性限制:基于规则的 ETL 系统难以适应不同类型的数据领域和数据源,最终需要大量定制。
这就是为什么基于 LLM 的 ETL 解决了这些限制,并带来了上下文智能、适应性和自动化。
LLM 如何改变 ETL 游戏
无模式提取
无模式或非结构化的 LLM 可以动态从非结构化来源提取相关信息。AI 模型理解上下文线索&#