最优化
doubleslow;
Success is a series of little wins.
展开
-
坐标上升/下降法(Coordinate Ascent/Descent)
学SVM时遇到二次规划要用SMO(Sequential Minimal Optimization序列最小优化)算法,在网上看资料发现坐标上升法的思想和SMO很相似,也特别有意思,特此详细挖一下。...原创 2019-05-19 10:24:16 · 960 阅读 · 0 评论 -
MATLAB求解规划问题(线性规划, 整数规划, 非线性规划)
目标函数和约束条件均为线性的最优化问题。约束为线性等式Or不等式求解方法:单纯形法分支:整数线性规划Iinteger Linear Programing原创 2019-05-17 18:06:45 · 33993 阅读 · 3 评论 -
线性模型(四)支持向量机(SVM)
(一) 间隔和支持向量SVM(Support Vector Machine)的思想和其他线性模型做2分类一样,都是找个超平面(hyperplan)然后一刀切。但SVM这么成功(在90年代直接造成了NN的第二冬),自然有其独到之处,那就是在超平面的概念上,多引入了“间隔”和"支持向量"的概念。可实现分类的超平面不唯一,我们怎么选择一个更好的超平面呢?直观上,应该是去找位于两类样本的“正中间”的那...原创 2019-05-12 23:17:04 · 842 阅读 · 0 评论 -
线性模型(三)逻辑回归logistic regression
逻辑回归,也叫对数几率回归,它先回归出一个预测值,再用一个函数(sigmoid函数)把预测值转换为0 or 1类的概率从而实现分类。前面讲的最小二乘只能回归,只是求解了一个拟合模型,对于新数据可以预测出一个具体的实值,却止步于此,不能用于二分类。探究一下“逻辑回归”和“对数几率回归”两个名字,里面的用词也承载了一些信息量。“逻辑”即“真”“假”,也就是布尔类型,不是0就是1,这是因为逻辑回归的基...原创 2019-05-12 16:36:24 · 554 阅读 · 0 评论 -
最小二乘法least-squares
又称最小平方法,一种优化方法,由高斯,勒让德独立提出,但高斯先发现,勒让德先发表用途:给一组数据找一个最佳匹配的函数,使得拟合性最好;根据拟合函数求未知数据。思想:最小化误差的平方和,主要是在最小化超定方程组(方程数比未知数多)的残差(观测值与模型提供的拟合值之间的差距)平方和。...原创 2019-05-11 15:35:23 · 4268 阅读 · 0 评论 -
梯度下降法python实现
Gradient descent,是一个一阶最优化算法,也叫最速下降法,用于寻找函数的极小值点,迭代搜索的方向是当前点的梯度反方向。用于寻找函数的极大值点的方法叫做梯度上升法,本质和梯度下降一样,只是迭代搜索的方向是当前点的梯度方向。梯度下降法,是一种数值优化方法,经常用于求解机器学习算法的模型参数,即无约束优化问题(我们知道这种问题在连续情况下,直接对所有变量求偏导,解析解就可能是极小值...原创 2019-08-09 22:32:50 · 775 阅读 · 0 评论 -
拉格朗日对偶函数&拉格朗日对偶问题
前段时间学了拉格朗日乘子法,学会了构造拉格朗日函数,也就是学会了把带约束(等式或不等式)的优化问题转化为无约束优化问题,私以为这部分就学完了到此为止了,没想到今天推导SVM的数学模型,要推原问题的对偶问题,愣是艰难地卡了大半天,一直没明白对偶问题的含义,原来拉格朗日函数得到以后还要进一步往下推出拉格朗日对偶函数,对偶函数的极值问题就是原问题的对偶问题,本文专门梳理和总结一下,以作学习记录。本...原创 2019-05-19 16:44:12 · 26947 阅读 · 7 评论 -
SMO(Sequential minimal optimization)序列最小优化算法
SMO在1998年由微软研究院的John C.Platt提出,提出是为了训练SVM的,原本训练SVM需要解一个很大规模的二次规划问题,SMO把它转化为了多个小的二次规划问题,于是就能解析求解,不需要耗时地用循环迭代进行数值求解了,而且还避免了矩阵运算。SMO需要的内存和训练集大小成线性比例,所以可以处理大规模的训练集。论文地址:https://www.microsoft.com/en-us/re...原创 2019-05-19 15:51:09 · 313 阅读 · 0 评论 -
数学建模 二次规划(普通求解方式 && 罚函数法)
matlab一般求解方式示例可以看出12xTHx=2x12−4x1x2+4x22\frac12x^THx=2x_1^2-4x_1x_2+4x_2^221xTHx=2x12−4x1x2+4x22即[x1x2][abcd][x1x2]=ax12+(b+c)x1x2+dx22=4x12−8x1x2+8x22\left[ \begin{matrix} x_1 &...原创 2019-09-14 16:04:26 · 4419 阅读 · 0 评论