数学建模 拟合(最小二乘拟合,多项式拟合,自定义函数拟合)


拟合就是想办法得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即
可。

matlab拟合工具箱

或者直接使用matlab的拟合工具箱
写好x, y值

x=1:10;
y=randn(size(x));

打开工具箱
在这里插入图片描述
或者在命令行输入cftool也可以弹出拟合工具箱窗口

>> cftool

设置几个参数,结果就有了,太简单啦

左上角文件下面那堆图标允许我们添加图例,网格,绘制残差图,等高线图,删除离群点等,非常棒的图形化功能,不用编代码也能很完美地实现多项式拟合

最下面的表格里,以及左边的results里还给出了一些拟合程度好坏的评价指标:

  • SSE,误差平方和,The sum of squares due to error,即最小二乘
    S S E = ∑ i = 1 n ( y ^ i − y i ) 2 SSE=\sum_{i=1}^n(\hat y_i- y_i)^2 SSE=i=1n(y^iyi)2

  • MSE, mean squared error,

最小二乘拟合是一种常用的数据拟合方法,可以用来找到最适合一组数据的曲线。在Matlab中,可以使用polyfit函数进行最小二乘拟合二次多项式函数的计算。 以下是使用Matlab进行最小二乘拟合二次多项式函数的步骤: 1. 准备数据:首先,需要准备一组数据,包括自变量和因变量。假设自变量为x,因变量为y。 2. 调用polyfit函数:使用polyfit函数进行最小二乘拟合。该函数的语法如下: ``` p = polyfit(x, y, n) ``` 其中,x和y是数据点的自变量和因变量,n是多项式的次数。对于二次多项式函数,n为2。 3. 获取拟合结果:polyfit函数返回一个多项式系数向量p,其中p(1)为二次项系数,p(2)为一次项系数,p(3)为常数项系数。 4. 绘制拟合曲线:使用polyval函数根据拟合结果绘制拟合曲线。该函数的语法如下: ``` y_fit = polyval(p, x) ``` 其中,p为拟合结果的多项式系数向量,x为自变量。 下面是一个示例代码: ```matlab % 准备数据 x = [1, 2, 3, 4, 5]; y = [2, 4, 6, 8, 10]; % 最小二乘拟合 p = polyfit(x, y, 2); % 绘制拟合曲线 x_fit = linspace(min(x), max(x), 100); y_fit = polyval(p, x_fit); plot(x, y, 'o', x_fit, y_fit); legend('原始数据', '拟合曲线'); ``` 这段代码中,我们准备了一组数据,然后使用polyfit函数进行最小二乘拟合,得到拟合结果的多项式系数向量p。最后,使用polyval函数根据拟合结果绘制拟合曲线。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值