坐标上升/下降法(Coordinate Ascent/Descent)

本文partly参考周志华的西瓜书和这篇知乎文章。

学SVM时遇到二次规划要用SMO(Sequential Minimal Optimization序列最小优化)算法,在网上看资料发现坐标上升/下降法的思想和SMO相似,特别有意思,特此详细挖一下。

CA—求极大值
CD—求极小值

CA/CD是非梯度优化方法,不需要计算目标函数的梯度,在每步迭代中只沿一个坐标方向进行搜索,然后循环使用所有坐标方向来达到目标函数的局部极小值。即:每次更新多元函数中的一维(优化一个变量,沿着一个坐标方向做一维最优化),经过多次迭代直到收敛到局部最优点,但迭代的次数较多。

以求解 f ( x ) f(\boldsymbol x) f(x)的局部极小值为例, x = ( x 1 , x 2 , … , x d ) T ∈ R d \boldsymbol x=(x_1,x_2,\ldots,x_d)^T\in\mathbb{R}^d x=(x1,x2,,xd)TRd.

从初始点 x 0 \boldsymbol x^0 x0开始,CD不断迭代构造序列 x 1 , x 2 , ⋯ \boldsymbol x^1,\boldsymbol x^2,\cdots x1,x2,

x t + 1 \boldsymbol x^{t+1} xt+1的第 i i i个分量的构造为:

x i t + 1 = arg ⁡ min ⁡ y ∈ R f ( x 1 t + 1 , x 2 t + 1 , … , x i − 1 t + 1 , y , x i + 1 t , … , x d t ) x_i^{t+1}=\arg\min_{y\in\mathbb{R}}f(x_1^{t+1},x_2^{t+1},\ldots,x_{i-1}^{t+1},y,x_{i+1}^{t},\ldots,x_d^{t}) xit+1=argyRminf(x1t+1,x2t+1,,xi1t+1,y,xi+1t,,xdt)

显然有:
f ( x 0 ) ≥ f ( x 1 ) ≥ f ( x 2 ) ≥ ⋯ f(\boldsymbol x^0)\geq f(\boldsymbol x^1)\geq f(\boldsymbol x^2)\geq \cdots f(x0)f(x1)f(x2)

最终序列收敛到局部极小点或者驻点(stationary point)。(因为求导为0只是极值点的必要条件,也可能求出的是驻点,这点都说烂了大家都懂)

适用于:规模较大的,目标函数光滑的复杂问题(目标函数不光滑则CA/CD may陷入非驻点non-stationary point)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值