抽空为大家整理了人工智能顶会ICLR 2020录用的图神经网络相关的最新论文,大牛论文非常多,感兴趣的朋友们赶紧Mark读起来吧!
Composition-based Multi-Relational Graph Convolutional Networks
链接 | https://openreview.net/pdf?id=BylA_C4tPr
作者 | Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Partha Talukdar
单位 | Carnegie Mellon University; Columbia University
Graph Neural Networks Exponentially Lose Expressive Power for Node Classification
链接 | https://openreview.net/pdf?id=S1ldO2EFPr
作者 | Kenta Oono, Taiji Suzuki
单位 | The University of Tokyo
What graph neural networks cannot learn: depth vs width
链接 | https://openreview.net/pdf?id=B1l2bp4YwS
作者 | Andreas Loukas
On the Equivalence between Positional Node Embeddings and Structural Graph Representations
链接 | https://openreview.net/pdf?id=SJxzFySKwH
作者 | Balasubramaniam Srinivasan, Bruno Ribeiro
单位 | Purdue University
Dynamically Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning
链接 | https://openreview.net/pdf?id=rkeuAhVKvB
作者 | Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, Zhi-Hong Deng
单位 | Carnegie Mellon University; Peking University
Pruned Graph Scattering Transforms
链接 | https://openreview.net/pdf?id=rJeg7TEYwB
作者 | Vassilis N. Ioannidis, Siheng Chen, Georgios B. Giannakis
The Logical Expressiveness of Graph Neural Networks
链接 | https://openreview.net/pdf?id=r1lZ7AEKvB
作者 | Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, Juan Pablo Silva
Efficient Probabilistic Logic Reasoning with Graph Neural Networks
链接 | https://openreview.net/pdf?id=rJg76kStwH
作者 | Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, Le Song
单位 | Georgia Institute of Technology; University of Illinois at Urbana Champaign
Automated Relational Meta-learning
链接 | https://openreview.net/pdf?id=r

本文汇总了ICLR 2020会议上关于图神经网络(GNN)的录用论文,涵盖多个领域的研究,包括节点分类、表达能力、逻辑推理、大规模知识图谱等,展示了GNN的最新进展和未来方向。
最低0.47元/天 解锁文章
1798

被折叠的 条评论
为什么被折叠?



