GNN in KG(七) Topology-Aware Correlations Between Relations for Inductive Link Prediction in KG

本文发表于AAAI2021,作者信息如下:
在这里插入图片描述
本文认为,许多现有的方法没有考虑到关系之间的语义相关性,这在现实世界的知识图中很常见。因此,本文提出了Topology-Aware CorrelaTions(TACT),将关系分为几种拓扑模式,然后提出一种关系网络(RCN)来学习不同模式对inductive连接预测的重要性。
举个例子,在Freebase中,“/people/person/nationality” 以及 “/people/ethnicity/languages_spoken”这两个关系通常具有关联关系,因为一个人的国籍通常能够影响他说什么语言。
为了捕获这种基于关系的语义特征,本文把知识图谱转化为Relational Correlation Graph (RCG),也就是关系是节点,关系的拓扑类别是边,然后提出了基于RCG的Relational Correlation Network (RCN)。

Methods

在这里插入图片描述
总体来说,模型分为两部分:RCN与R-GCN。前者是基于RCG的,后者则基于知识图谱本身。首先,本文说明如何将构建RCN。

Modeling correlations between relations

为了对关系之间的语义关联进行建模,我们从两个方面考虑了这些关联:

  1. Correlation patterns:在知识图谱中,任意两个关系之间的相关性都与它们的拓扑结构高度相关。
  2. Correlation coefficients:使用相关系数来表示任意两个关系之间的语义相关度,也就是赋予边权值。

本文提出了如下七种拓扑结构:“head-to-tail”, “tailto-tail”, “head-to-head”, “tail-to-head”, “parallel”, “loop” and “not connected”,化成图就是:
在这里插入图片描述
在具体的RCN构建时,只考虑除了NC之外的前六种关系。和GCN一样,RCN的聚合也是对关系进行相应的邻域聚合:
在这里插入图片描述
其中, W p ∈ R d × d W^p∈R^{d×d} WpRd×d R ∈ R ∣ R ∣ × d R∈R^{|R|×d} RRR×d为关系节点的嵌入, R [ i , : ] = r i R_{[i,:]}=r_i R[i,:]=ri代表其中一个关系的表示,也就是第 i i i行。 Λ t p ∈ R 1 × ∣ R ∣ Λ_t^p∈R^{1×|R|} ΛtpR1×R表示权重参数,是不同关系的相关程度的度量, N t p ∈ R 1 × ∣ R ∣ N_t^p∈R^{1×|R|} NtpR1×R是指示函数,如果 r i r_i ri r t r_t rt p p p级拓扑模式连接那么就是1,否则就是0。并且,要严格限制 [ Λ t p ] i > 0 [Λ_t^p]_i>0 [Λtp]i>0,并且其每个位置的值的和为1。那么解读一下上述的公式,就是先对关系节点的特征做线性变换(和GCN一样),然后前边乘的 ( ) () ()中的项可以理解为邻接矩阵的变种, N t p N_t^p Ntp为了筛选出对应的 p p p。然后,每一种拓扑关系都有相应的更新方式,最终把所有的关系下的表示做平均。然后,更新节点的操作被定义为简单的拼接以及线性变换:
在这里插入图片描述
W p ∈ R 2 d × d W^p∈R^{2d×d} WpR2d×d

Modeling graph structures

在建模图结构时使用了enclosing subgraph的概念。enclosing subgraph定义如下:
在这里插入图片描述
翻译一下,就是取头尾节点的k-hop邻域的交集,然后修剪掉孤立的节点以及与u或者v距离大于k的节点,并用这个图代表三元组。有了enclosing subgraph,就可以根据节点到 u v uv uv的距离定义其中的其他节点 ( d ( i , u ) , d ( i , v ) ) (d(i, u), d(i, v)) (d(i,u),d(i,v)),其中 d ( i , u ) d(i,u) d(i,u)表示节点 i i i u u u的最短距离,距离路径不计算任何通过 v v v的路径。这将捕获每个节点相对于目标节点的拓扑位置。然后,将这个距离转化为one-hot向量:
在这里插入图片描述
这样节点的表示就可以得到了。那么,enclosing subgraph中任意一个节点的表示被定义为:
在这里插入图片描述
这是基于此节点的邻域聚合,并且依旧要区分不同的关系类型。
之后,将所有节点的表示做平均即可得到子图的表示:
在这里插入图片描述
那么最终,基于知识图谱的三元组的表示为子图与头尾实体的拼接:
在这里插入图片描述

The framework of TACT

Scoring network
在这里插入图片描述
Loss function。就是普通的链接预测损失:
在这里插入图片描述

Experiments and Analysis

数据集:(v1-4表示不同的版本)
在这里插入图片描述
准确率:
在这里插入图片描述
TACL-base只与关系图的输出有关,不包含对enclosing subgraph的表示:
在这里插入图片描述
消融试验:
w/o RA :不使用关系节点的邻域聚合。
w/o RC :不考虑关系的拓扑结构之间的相关性的情况下进行建模(不添加注意力):
在这里插入图片描述
在这里插入图片描述
一些关系及其前3个相关关系。这些关系取自WN18RR和NELL-995。我们用CP来表示相关模式,用CC来表示相关系数。
在这里插入图片描述
在关系数量更更少且节点数更多的YAGO3上验证模型的性能:
在这里插入图片描述
试验的时间:
在这里插入图片描述

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值