Abstract
计算机视觉中的曲线结构的勾画(Delineation of curvilinear structures)问题在很多实际应用中都非常重要。之前的工作都使用像素损失(BCE),作者认为,只使用像素级的损失不适合这类的问题,因为它们无法在最终预测中反映错误的拓扑影响,所以我们提出了一个新的损失项。此外,我们还提出了一个 refinement pipeline(反复使用相同的模型,在每次迭代中进行预测,同时保持参数的数目和模型的复杂度不变——共享相同的参数和网络结构)。
1. Introduction
作者认为,之前的BCE损失函是局部的损失,并不能考虑非常复杂的拓扑结构。如图©(d)表明,小的局部像素错误可能会导致较大的拓扑变化。
道路提取的网络可以参考生物分割中视网膜的分割网络。
3. Method
我们使用全卷积的U-Net作为训练模型,但是这个损失函数(BCE)只是一个局部的操作,并不考虑曲线结构的整体几何形状。
3.1. Notation
WxW的输入图像
Ground Truth label(1表示曲线结构中的像素,0表示背景像素)
f:使用权重W参数化的U-Net
网络的输出
网络输出的每个元素(像素i具有标签为1的概率,Yi是随机伯努利变量)
3.2. Topology-aware loss
在普通的图像分割问题中,用于训练网络的损失函数通常是标准的像素级二进制交叉熵(BCE):
此损失函数独立对待每个像素,它不捕获拓扑特征。
因此,我们在损失函数中引入惩罚项,以解决这一高阶信息。 我们利用预先训练的网络包含的有关真实图像结构这一特性。 特别是,我们在ImageNet数据集上预先训练的VGG19网络[26]的多个层上使用了特征图,作为描述轮廓的高级特征的描述。
我们的新惩罚项试图使Ground Truth图像的VGG19描述器与相应的预测轮廓之间的差异最小化。
预训练的VGG19网络第n层中的第m个特征图,N是卷积层数,Mn是第n层中的通道数目,每个大小是Wn x Hn。
图3可以看出VGG19在此任务中表现出色的原因。
最终,我们最小化L(x,y,w)
3.3. Iterative refinement
之前的策略都是为每个迭代k训练了一个不同的模块fk,从而增加了模型参数的数量,并使训练对所需标记数据的数量要求更高。
⊕表示通道concatenation,为简单起见,我们省略了 fk 的权重。 假设每个模块 fk 在y上都是Lipschitz连续的,(Lipschitz连续性是以下假设的直接结果:每个fk都会始终改善前一次迭代的预测),我们知道
收敛于y.
我们将模块的输入规模保持固定,以便利用网络的能力来纠正其自身的错误。 我们表明,它有助于网络学习收缩(contraction)图,从而逐步改善估计值。 因此,我们的预测模型可以表示为
其中K是迭代总数,yˆ K是最终预测。 我们用空预测yˆ 0 = 0初始化模型。
我们不仅使最终网络输出的loss最小,还使部分loss的加权总和最小。 第k个局部模型(k<=K),是迭代方程6 k次获得的模型。 第k个部分loss Lk是公式3评估第k个部分模型所得到的值。 使用这种表示法,我们将最终损失(refinement loss)定义为部分损失的加权总和
Z是正则化因子,
但是,考虑到较早的损失,网络可使网络从沿途可能犯的所有错误中吸取教训,并提高数值稳定性,它还避免了在将预测重新注入计算之前必须对其进行预处理。
在实践中,我们首先训练单个模块网络,即K =1。然后,我们递增K,进行重新训练和迭代。在训练和测试期间,我们将K限制为3,因为对于较大的K值,结果不会显着变化。 我们将证明这成功地填补了小间隙的空白。
4. Results