蓝桥杯之取球问题

今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。    

我们约定:         

每个人从盒子中取出的球的数目必须是:1,3,7或者8个。    

轮到某一方取球时不能弃权!     

A先取球,然后双方交替取球,直到取完。     

被迫拿到最后一个球的一方为负方(输方)     

请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?     程序运行时,从标准输入获得数据,其格式如下:     

先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。

程序则输出n行,表示A的输赢情况(输为0,赢为1)。    

例如,用户输入: 4 1 2 10 18       

则程序应该输出: 0 1 1 0      

分析:定义flag[]存放最终陪你过输出结果,初始值都为0,b[]存放一次可以取的个数,即1,3,7,8,a[]接受原始输入的n个数,在接收输入数据的同时求出n个数中的最大数赋给变量max。从2开始循环,一一判断。判断flag[i]时,可以根据flag[i-b[j]]来求得flag[i].

2.3.4,5,6......,max

假定flag[i-b[j]]为0,最终结果flag[i] = 1,表明A取胜。由于A先取数,让A第一次先选择b[i]个球,这时剩下i-b[j]个球,根据flag[i-b[j]]的值即可判断A是输是赢 。因为对于i-b[j]个球无论怎样取的结果已经求出,若A输了,那此时B先取球(相当于A与B交换下顺序),所以B输时,那么A就是赢的,flag[i] = 1.

而flag[i-b[j]]为1,推理过程与上面一样,flag[i] = 0.

程序代码如下:

#include <stdio.h>

int main()
{
	int a[100];
	int b[] = {1,3,7,8};
	int flag[10001] = {0};
	int n;
	int max = 0;
	int i,j;
	
	scanf ("%d",&n);

    for (i=0; i<n; i++)
	{
		scanf ("%d",a+i);
		if (a[i]>max)
		{
			max = a[i];
		}
	}
	
	for (i=2; i<=max; i++)
	{
		for (j=0; j<4&&b[j]<i; j++)
		{
			if (flag[i-b[j]] == 0)
			{
				flag[i] = 1;
				break;
			}
		}
	}
	for (i=0; i<n; i++)
	{
		printf ("%d\n",flag[a[i]]);
	}
	
	return 0; 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值