【Pytorch】反向传播算法

前向算法中,需要w参与运算,w是网络中各个连接上的权重,这个值需要在训练中确定,在传统的机器学习方法中,可以通过梯度下降来确定权重的调整。在多层感知机中获得隐藏层的权重是困难的,我们能做的是计算输出层的误差更新参数。虽然无法直接获得隐藏层的权值,但是我们知道在权重变化后相应的输出误差的变化。预测值和真实值之间的差别可以评估输出层的误差,然后根据输出层的误差,计算最后一个隐藏层中的每个神经元对输出层误差影响了多少,最后一层隐藏层的误差又由前一层的隐藏层的计算得出。如此类推,直到输入层,这就是反向传播算法的思想。
反向传播算法基于梯度下降策略,是链式求导法则的一个应用,以目标的负梯度方向对参数进行调整。这是一场以误差为主导的反向传播运动,旨在得到最优的全局参数矩阵,进而将多层神经网络应用到分类或者回归任务当中去。
在反向传播算法中有一个超参数:学习率,用来制定反向传播过程中调整神经网络权重的速率,学习率越小岩者梯度下降的速度越慢,训练也就越慢,特别是在训练的初期,需要很长时间才能接近完美的训练目标。如果学习率过大,在训练过程中就会出现震荡的现象。通常在训练初期给一个较小的学习率,随后逐步增大学习率。这样做的原因是:如果一开始选择较大的学习率,可能导致损失之爆炸和震荡;若后期选择较小的学习率,可能会导致过拟合和收敛速度慢。
Pytorh封装了这一系列复杂的计算,Pytorch中所有神经网络的核心是autograd自动求导包。torch.autograd包的核心是Variable类,Variable类封装了Tensor并支持所有Tensor的操作,在程序中一旦完成了前向的计算,就可以直接调用.backward()方法,这时所有的梯度计算会自动进行。如果Variable是标量的形式,则不必指定任何参数给backward()。否则就需要制定一个和Variables形状匹配的grad_variables参数,用来保存相关Variable的梯度。
Pytorch中运算反向传播的例子:

from torch import torch.autograd
import Variable

#创建Variable变量
x = Variable(torch.ones(2,2), requires_grad=True)

#对Variable的操作
y = x + 2
z = y * y * 3
out = z.mean()

#自此关于out的前向运算计算完毕,就可以调用backward()函数
out.backward()

参考资料:Pytorch机器学习:从入门到实践

反向传播算法是深度学习中的核心算法之一,它是用来计算神经网络中参数的梯度,并根据梯度更新参数,从而实现模型的训练。 在PyTorch中,实现反向传播算法的一般步骤如下: 1. 构建计算图:首先,需要定义神经网络模型,并将输入数据传递给模型进行前向计算,得到模型的输出结果。 2. 计算损失函数:根据模型的输出结果和标签数据,计算损失函数。PyTorch中提供了一些常用的损失函数,如交叉熵损失函数、均方误差损失函数等,可以根据具体情况进行选择。 3. 计算梯度:通过调用损失函数的backward()方法,计算损失函数对每个参数的梯度。在计算梯度之前,需要将梯度清零,以避免之前的梯度对当前梯度的影响。 4. 参数更新:根据梯度信息和优化算法,更新模型的参数。PyTorch中提供了一些常用的优化算法,如随机梯度下降、Adam等。 下面是一个简单的示例代码,实现了一个简单的全连接神经网络,并使用反向传播算法进行训练: ```python import torch import torch.nn as nn import torch.optim as optim # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义输入数据和标签数据 inputs = torch.randn(1, 10) labels = torch.randn(1, 1) # 定义损失函数和优化算法 net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) # 计算模型输出和损失函数 outputs = net(inputs) loss = criterion(outputs, labels) # 计算梯度并更新参数 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上面的代码中,首先定义了一个全连接神经网络模型,包含两个线性层。然后,定义了输入数据和标签数据。接着,定义了损失函数和优化算法,并将模型的参数传递给优化器。在每次训练迭代中,计算模型的输出结果和损失函数,然后使用反向传播算法计算梯度,并使用优化算法更新模型的参数。 需要注意的是,PyTorch中的反向传播算法是自动求导的,即不需要手动计算梯度,只需要通过调用backward()方法即可。另外,在每次迭代中,需要将梯度清零,否则会累加之前的梯度,导致结果不正确。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值