【TensorFlow】MNIST数字识别问题

共有三个程序:

  • mnist.inference.py:定义了前向传播的过程以及神经网络中的参数
  • mnist_train.py:定义了神经网络的训练过程
  • mnist_eval.py:定义了测试过程

【mnist_inference.py】
在这段代码中定义了神经网络的前向传播算法。无论是训练时还是测试时,都可以直接调用inference这个函数,而不用关心具体的神经网络结构

import tensorflow as tf

INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

# 通过tf.get_variable函数来获取变量。
# tensorflow提供了通过变量名称来创建或者获取一个变量的机制,通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递, 下面这两个定义是等价的
# v = tf.get_variable("v", shape=[1], initializer=tf.constant_initiaizer(1.0))
# v = tf.Variable(tf.constant(1.0, shape=[1], name="v"))
# 在训练时神经网络会创建这些变量;在测试时会通过保存的模型加载这些变量的取值,而且更加方便的是,因为可以在变量加载时将滑动平均变量重命名,所以可以直接通过同样的名字在训练时使用变量自身,而在测试时使用变量的滑动平均值。在这个函数中也会讲变量的正则化损失加入损失集合
def get_weight_variable(shape, regularizer):
	weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
	
	# 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合
	if regularizer != None:
		tf.add_to_collection('losses', regularizer(weights))
	
	return weights

# 定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
	# 声明第一层神经网络的变量并完成前向传播过程
	with tf.variable_scope('layer1'):
		weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
		biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
		layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases)
	
	# 声明第二层神经网络的变量并完成前向传播过程
	with tf.variable_scope('layer2'):
		weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
		biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
		layer2 = tf.matmul(layer1, weights) + biases
	
	return layer2

【mnist_train.py】
使用定义好的前向传播过程,以下代码给出了神经网络的训练程序:

import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

import mnist_inference

BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.9
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVIING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = '/path/to/model'
MODEL_NAME = 'model.ckpt'

def train(mnist):
	# 定义输入输出placeholder
	x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
	y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')

	regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
	
	y = mnist_inference.inference(x, regularizer)
	global_step = tf.Variable(0, trainable=False)

	# 滑动平均操作
	variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
	variables_averrages_op = avriabe_averrages.apply(tf.trainable_variables())

	cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
	cross_entropy_mean = tf.refuce_mean(cross_entropy)
	loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))

	learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples/BATCH_SIZE, LEARNING_RATE_DECAY)
	
	train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

	# 既反向传播,又滑动平均参数更新
	with tf.control_dependencies([train_step, variables_averages_op]):
		train_op = tf.no_op(name='train')

	saver = tf.train.Saver()
	with tf.Session() as sess:
		tf.global_vatiables_initializer().run()

		for i in range(TRAINING_STEPS):
			xs, ys = mnist.train.next_batch(BATCH_SIZE)
			_, loss_value, step = sess.run([train_op, loss, global_step],
											feed_dict={x:xs, y_:ys}})
		
		if i%1000 == 0:
		# 保存当前的模型,注意这里给出了global_step参数,这样可以让每个被保存模型的文件名末尾加上训练的轮数,比如model.ckpt-1000
			saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_setp)

def main(argv=None):
	mnist = input_data.read_data_sets("/path/to/mnist_data", one_hot=True)
	train(mnist)

if __name__ == '__main__':
	tf.app.run()

【mnist_eval.py】
在以上程序中,每1000轮保存一次训练好的模型,这样可以通过一个单独的测试程序,更加方便的在滑动平均模型上做测试。

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

import mnist_inference
import mnist_train

# 每10秒加载一次最新的模型,并在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10

def evaluate(mnist):
	with tf.Graph().as_default() as g:
		x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
		y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
		validate_feed = {x:mnist.validation.images, y_:mnist.validation.labels}

		# 直接通过调用封装好的函数来计算前向传播的结果,因为测试时不关注正则化损失的值,所以这里用于计算正则化损失损失的函数被设置为None
		y = mnist_inference.inference(x, None)

		correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
		accuracy = tf.reduce_mean((tf.cast(correct_prediction, tf.float32)))

		# 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均的函数来获取平均值了,这样就可以完全共用mnist_inference.py中定义的前向传播过程
		# 在采用随机梯度下降算法训练神经网络时,使用滑动平均模型在很多应用中都可以在一定程度提高最终模型在测试数据上的表现,
		# 在tensorflow中提供了tf.train.ExpotentialMovingAverage来实现滑动平均模型,
		# 在初始化ExpotentialMovingAverage时,需要提供一个衰减率,这个衰减率将用于控制模型更新的速度,
		# ExpotentialMovingAverage对每一个变量会维护一个影子变量,这个影子变量的初始值就是相应变量的初始值,
		# 每次运行变量更新时,影子变量的值会更新为shadow_variable=decay*shadow_variable + (1-decay)*variable.
		# 其中shadow_variable为影子变量,variable为待更新的变量,decay为衰减率
		# decay决定了模型更新的速度,decay越大模型越趋于稳定
		variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
		variables_to_restore = variable_averages.variables_to_restore()
		saver = tf.train.Saver(variables_to_restore)
		
		while True:
			with tf.Session() as sess:
				# tf.train.get_checkpoint_state函数会通过checkpoint文件自动找到目录中最新模型的文件名
				ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
				if ckpt and ckpt.model_checkpoint_path:
					saver.restore(sess, ckpt.model_checkpoint_path)

					# 通过文件名得到模型保存时迭代的轮数
					global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
					accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
					print("After %s training steps, validation accuracy=%g" % (global_step, accuracy_score))
				else:
					print('No checkpoint file found')
					return
			time.sleep(EVAL_INTERVAL_SECS)

def main(argv=None):
	mnist = input_data.read_data_sets("/path/to/mnist_data", one_hot=True)
	evaluate(mnist)

if __name__ == '__main__':
	tf.app.run()

参考资料:
TensorFlow实战Google深度学习框架-中国公信出版集团

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: TensorFlow MNIST手写数字识别是一种基于TensorFlow框架的机器学习模型,用于识别手写数字。该模型使用MNIST数据集进行训练和测试,该数据集包含了大量的手写数字图片和对应的标签。通过训练模型,可以使其能够自动识别手写数字,并对其进行分类。这种技术在数字识别、图像识别等领域有着广泛的应用。 ### 回答2: Tensorflow是Google推出的一款机器学习框架,是目前使用最广泛的深度学习框架之一。其中,mnist手写数字识别TensorFlow中最基础、最经典的示例之一。 mnist数据集是由60,000个训练样本和10,000个测试样本组成的,每个样本都是28*28像素的灰度图像,代表着0~9中的一个数字。其目的是要让开发者们搭建一个能够准确识别手写数字的机器学习模型。 Tensorflow通过建立计算图的方式来进行模型的训练和预测。首先,需要下载mnist数据集,并将其转化为可以使用的Tensorflow格式。 Tensorflow提供了一个方便的函数,用于读取、解析和预处理数据集。 接着,需要定义神经网络模型。在mnist手写数字识别中,常见的是使用卷积神经网络(CNN),由于手写数字数据集较小,因此简单的结构就可以取得不错的效果。 然后,需要进行模型训练,也就是反向传播算法。在这一步骤中,需要定义一些超参数,例如学习率、损失函数和优化器等,并进行模型训练。训练结束后,可以对训练模型进行评估和测试,以检测模型性能,并进行优化。 最后,使用训练好的模型进行预测,即输入一张手写数字图片,并输出它所代表的数字。在这个过程中,需要将输入的图像进行预处理,并通过训练好的模型进行推断,最终得到预测的数字。 总的来说,Tensorflow mnit手写数字识别是一个非常基础、入门的机器学习示例,其不仅有助于学习Tensorflow的使用方法,还可以提高模型训练和优化的实战能力。对于深度学习初学者以及需要进行手写数字识别的开发者来说,这是一个非常值得学习的项目。 ### 回答3: TensorFlow MNIST是一个普遍使用的机器学习问题,是识别手写数字问题MNIST数据集中的数字是通过手写书写的,每个数字在数据集中表示为$28 \times 28$像素的图像。这个问题是非常有趣的,因为它既有实际的应用,也有趣味性。MNIST数据集包含60,000张训练图像和10,000张测试图像。每个图像都被标记为表示数字的标签。该问题的目标是为一个图像分类器编写代码,使它尽量准确地将每个数字的图像与正确的标签匹配。 TensorFlow是一种流行的机器学习框架,用于在许多不同的环境中开发人工智能模型。它支持使用Python等语言编写代码,并且由于其可扩展性和可移植性而受到欢迎。 TensorFlow MNIST问题的解决方案涉及构建深度学习模型,使用卷积神经网络和softmax回归来进行图像分类。这个模型利用TensorFlow的高级API构建,具有简单易用的界面,使得新手也能轻松地理解和使用。 首先,需要对MNIST数据集进行加载和预处理。然后,构建一个卷积神经网络模型,其结构可自定义调整。然后,通过反向传播过程训练模型,使其能够检测和识别MNIST数据集中的数字。在训练完成后,测试数据集用于检测模型的准确性,以确定模型的性能是否满足需求。 TensorFlowMNIST手写数字识别问题可以帮助新手熟悉机器学习中最基础的问题和技术,如CNN和softmax回归,以及如何使用TensorFlow API安装和建立一个深度学习模型。它还可以帮助学习者理解模型堆栈、卷积核、激活函数和权重等概念,以及在训练和测试时如何对其进行微调。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值