Tensorflow系列三:MNIST数字识别样例程序
1. mnist_inference定义前向传播函数及神经网络(单隐层)参数
import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER_NODE = 500
def get_weight_variable(shape,regularizer):
weights = tf.get_variable("weights",shape,
initializer=tf.truncated.normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(weights))
return weights
def inference(input_tensor,regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE,LAYER_NODE],regulaerizer)
bias = tf.get_variable('bias',[LAYER_NODE],tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor,weights)+bias)
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER_NODE,OUTPUT_NODE],regulaerizer)
bias = tf.get_variable('bias',[OUTPUT_NODE],tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1,weights)+bias
return layer2
2. mnist_train训练程序
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = '/path/to.model/'
MODE_NAME = "model.ckpt"
def train(mnist):
x = tf.placeholder(tf.float32,[None,mnist.inference.INPUT_NODE],name="x-input")
y_ = tf.placeholder(tf.float32,[None,mnist.inference.OUTPUT_NODE],name="y-input")
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
y = mnist_inference.inference(x,regularizer)
global_step = tf.Variable(0,trainable=False)
variable_average = tf.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,golbal_step)
variable_average_op = variable_average.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y,tf.argmax(y_,1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean+tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,
mnist.train.num_examples/BATCH_SIZE,
LEARNING_RATE_DECAY)
train_step = tf.train.GradientDescentOptimizer(learning_rate)
.minimize(loss,global_step=global_step)
with tf.control_dependencies([train_step, variable_average_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
with tf.Session() as sess:
tf.initialize_all_variables().run()
for i in range(TRAINING_STEPS):
xs,ys = mnist.train.next_batch(BATCH_SIZE)
_,loss_value,step = sess.run([train_op,loss,global_step],
feed_dict={x:xs,y_:ys})
if i%1000 ==0:
print("After %d training steps, loss on batch is %g."%(step,loss_value))
saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),golbal_step=global_step)
def main(argv=None):
mnist = input_data.read_data_sets('/tmp/data',one_hot=True)
train(mnist)
if __name__ == '__main__':
tf.app.run()
3. mnist_eval 测试程序
import tensorflow as tf
import time
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
with tf.Graph.as_default() as g:
x = tf.placeholder(tf.float32,[None,mnist.inference.INPUT_NODE],name="x-input")
y_ = tf.placeholder(tf.float32,[None,mnist.inference.OUTPUT_NODE],name="y-input")
validate_feed = {x:mnist.validation.images,y_:mnist.validation.labels}
y=mnist_inference.inference(x,None)
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
varidable_averages = tf.train.ExponentionMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
while True:
with tf.Session() as sess:
ckpt = tf.get_checkpoint_state(mnist_train.MODELSAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-].split('-')[-1]
accuracy_score = sess.run(accuracy,feed_dict=validate_feed)
print("After %d training steps, validation accuracy = %g."
%(step,accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERCAL_SECS)
def main(argv=None):
mnist = input_data.read_data_sets('/tmp/data',one_hot=True)
evaluate(mnist)
if __name__ == '__main__':
tf.app.run()