TensorFlow学习之实现MNIST识别(实现断点重训)-----详细注解版

这篇博客详细介绍了在TensorFlow中实现MNIST手写数字识别,包括训练过程中的断点重训功能。通过分析mnist_inference.py、mnist_train.py和mnist_eval.py三个关键文件,讲解了tf.Variable和tf.get_variable在变量创建与管理上的区别,以及tf.name_scope和tf.variable_scope在命名空间管理上的作用。文章还总结了这两者如何协同工作,确保变量命名的唯一性和重用性。
摘要由CSDN通过智能技术生成

首先介绍一下:这里有三个文件:

mnist_inference.py      实现了神经网络的前向传播

mnist_train.py   实现了神经网络的训练(可直接运行,训练模型,实现了断点重训)

mnist_eval.py 实现了模型评估(评估模型的准确率)

下面直接贴代码:代码中有详细的注释。。。。。

mnist_inference.py文件代码:

# coding: utf-8
import tensorflow as tf

#输入层
INPUT_NODE = 784
#输出层
OUTPUT_NODE = 10
#隐藏层
LAYER1_NODE = 500

#初始化权重
def get_weight_variable(shape, regularizer):
    
    #tf.get_variable(name, shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种:
    # tf.constant_initializer:常量初始化函数
    # tf.random_normal_initializer:正态分布
    #tf.truncated_normal_initializer:截取的正态分布
    # tf.random_uniform_initializer:均匀分布
    # tf.zeros_initializer:全部是0
    # tf.ones_initializer:全是1
    # tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值
    weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
    if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
    return weights

#前向传播
def inference(input_tensor, regularizer):
    with tf.variable_scope('layer1'):

        weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
        biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)

    with tf.variable_scope('layer2'):
        weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
        biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
        layer2 = tf.matmul(layer1, weights) + biases

    return layer2


mnist_train.py 文件代码:

#-*- coding: UTF-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import os

BATCH_SIZE = 100 #一次训练使用的batch的大小,该数值越大越接近梯度下降,越小越接近随机梯度下降
LEARNING_RATE_BASE = 0.8 #基础的学习率
LEARNING_RATE_DECAY = 0.99 #学习率的衰减率
REGULARIZATION_RATE = 0.0001 #正则化项的系数,即lambda
TRAINING_STEPS = 30000 #训练轮数
MOVING_AVERAGE_DECAY = 0.99 #滑动平均衰减率
MODEL_SAVE_PATH="MNIST_model/"
MODEL_NAME="mnist_model"


def train(mnist):

    """
    placeholder
    为占位符,是一个抽象的概念。用于表示输入输出数据的格式。
    告诉系统:这里有一个值/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值