首先介绍一下:这里有三个文件:
mnist_inference.py 实现了神经网络的前向传播
mnist_train.py 实现了神经网络的训练(可直接运行,训练模型,实现了断点重训)
mnist_eval.py 实现了模型评估(评估模型的准确率)
下面直接贴代码:代码中有详细的注释。。。。。
mnist_inference.py文件代码:
# coding: utf-8
import tensorflow as tf
#输入层
INPUT_NODE = 784
#输出层
OUTPUT_NODE = 10
#隐藏层
LAYER1_NODE = 500
#初始化权重
def get_weight_variable(shape, regularizer):
#tf.get_variable(name, shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种:
# tf.constant_initializer:常量初始化函数
# tf.random_normal_initializer:正态分布
#tf.truncated_normal_initializer:截取的正态分布
# tf.random_uniform_initializer:均匀分布
# tf.zeros_initializer:全部是0
# tf.ones_initializer:全是1
# tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
return weights
#前向传播
def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2
mnist_train.py 文件代码:
#-*- coding: UTF-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import os
BATCH_SIZE = 100 #一次训练使用的batch的大小,该数值越大越接近梯度下降,越小越接近随机梯度下降
LEARNING_RATE_BASE = 0.8 #基础的学习率
LEARNING_RATE_DECAY = 0.99 #学习率的衰减率
REGULARIZATION_RATE = 0.0001 #正则化项的系数,即lambda
TRAINING_STEPS = 30000 #训练轮数
MOVING_AVERAGE_DECAY = 0.99 #滑动平均衰减率
MODEL_SAVE_PATH="MNIST_model/"
MODEL_NAME="mnist_model"
def train(mnist):
"""
placeholder
为占位符,是一个抽象的概念。用于表示输入输出数据的格式。
告诉系统:这里有一个值/