从信号采集到一维卷积:
卷积这个概念其实非常简单,先从一维卷积谈起,在信号采集的过程中会有噪音干扰,信号是会随着时间进行波动的
比如说一条曲线(拿画图板画的):
要采集T点的数据的时候,要考虑旁边的权重,离中心点T越近,则权重越大,比如上图的三个点,T的权重为2,旁边的点离中心远一点,则权重低一些,那就设为1呗
那么最简单的一个一维卷积核就产生了
[1,2,1]
键入上述图片是一个巨大的集合,那么可以写一个集合:
[1,2,3,2,1,2]
卷积核运动到T(2)的时候,就会产生
[1,2,1]
[1,2,3,2,1,2]
上下数字一乘,就会产生一个值8,那么8点就是新的这个地方的值
如果从头向后运动的话,就会产生一个新的数组
[8,10,8,6]
可以发现和第一张图片差不多,但是更短
该过程如下:
这个数组明显比原来的数组丢失怎么办,有两种办法处理
在边缘填上空白值
[0,1,2,3,2,1,2,0]
或者复制最边缘的值
[1,1,2,3,2,1,2,2]
采集一遍就会得到和原来数组长度一样的新的卷积结果了
数学公式:
卷积边缘是为了抵消噪声的,所以离当前时间点 越近的测量点权重应该越高,我们可以用下面的公式表示
从一维卷积扩展到二维卷积:
一张图就解释清楚了,得到一点附加周围噪声的权值的结果
下一篇文章将接着上一篇直接用一个常用的卷积核 Prewitt算子去完成一副图像的处理