数据分析思维的重要性:没有思维的数据分析师脑袋中几乎是一团乱麻,不知道问题是否发生;不知道问题在哪;不知道为什么;不知道分析对不对;不确定执行结果;不知道老板给不给加薪。
三种核心思维(What)
捋顺思路,将其数据化,落地且贴合业务
结构化(思维导图辅助)
1. 将论点归纳和整理
寻找核心论点
2. 将论点递进和拆解
结构拆解,自上而下
3. 将论点完善和补充
要求MECE(相互独立,完全穷尽)
公式化(进一步优化思维导图)
1. 一切皆可量化[±*/]:
- 不同业务叠加可以用加法;
- 减法常用来计算业务之间的逻辑关系;
- 乘法和除法是各种比例/比率
2. 最小不可分割:
直到细化到可以使用原始数据或者某些业务指标
业务化
数据分析的思维技巧(Why)
1. 象限法
选择两个或三个“独立”的“指标/维度”,将数据进行分类。策略驱动,即不同象限的数据对应不同的策略,象限的划分准则需要根据策略/需求来定。如经典的RFM模型(Recency; Frequency; Monetary)。
2. 多维法
进一步细分某些维度:用户统计维度,用户行为维度,消费维度,商品维度。精细驱动,可以防止辛普森悖论,也叫钻取(Drill-Down)。
3. 假设法
启发思考驱动,在没有直观数据线索或者是进行预测时,对现状做一系列的假设,再进行推理,得出结论。
4. 指数法
对数据进行加工。线性加权法,(反)比例法(e.g, 忠诚指数),自然对数法(e.g, 热度)。目标驱动,加工不可直接利用的数据。
5. 二八法(帕累托图)
6. 对比法
“好的数据指标一定是比例或者比率;好的数据分析,一定会用到对比。”一些常用的对比方向:竞争对手,特征和属性,时间同比,时间环比,类别,转化,前后变化。
7. 漏斗法
如何再业务时间锻炼分析能力(How)
1. 保持好奇心
2. 在生活中练习
3. 在工作中练习
小案例
- 如何分析找出8月份某线下销售的产品销售额度和去年同比下降了 20%的原因?
- 麦肯锡的金字塔思维属于哪种核心思维?
- 如何预估上海地区的共享单车投放量?
- 在拿不到活动具体数据的情况下,如何证明和衡量活动的有效性呢?
- 如何分析一个商品是否该提价?
- 为什么啤酒与尿布是错误的?