Mounvo
码龄4年
  • 10,085
    被访问
  • 48
    原创
  • 42,955
    排名
  • 8
    粉丝
关注
提问 私信

个人简介:you are more than what you have become

  • 加入CSDN时间: 2018-04-17
博客简介:

Mounvo的博客

查看详细资料
  • 3
    领奖
    总分 174 当月 26
个人成就
  • 获得4次点赞
  • 内容获得9次评论
  • 获得25次收藏
创作历程
  • 3篇
    2022年
  • 26篇
    2021年
  • 8篇
    2020年
  • 11篇
    2019年
成就勋章
TA的专栏
  • 数据库
    8篇
  • 数据分析
    6篇
  • dataWhale
    20篇
  • python
    7篇
  • 开发工具
    1篇
  • 杂
  • CV
  • 老图搬砖
    12篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

搭建数据指标体系(抖音)

文章目录一、搭建指标体系的意义二、如何搭建指标体系1. 选择关键指标(北极星指标)2. 从AARRR模型出发搭建产品基本指标体系3. 基于业务/产品模块所属类型搭建指标一、搭建指标体系的意义好的指标可以指导产品和业务的发展,梳理业务关系,搭建指标体系的主要目的有:确定北极星指标,统一各团队的发展方向,定量衡量公司业务的好坏;搭建完善的产品数据监控看板,监控业务情况,及时发现业务问题,评估业务中可以改进的地方;统一指标口径“你无法衡量的你就无法管理”。只有明确好指标和目标,才能真正的实现用数据
原创
发布博客 2022.05.17 ·
26 阅读 ·
0 点赞 ·
0 评论

支付宝营销策略效果分析 A/Btest

文章目录一、项目背景A/B test的流程二、分析过程2.1 数据预处理2.2 计算样本量是否满足最小样本数2.3 实验评估-假设检验方案2的点击率是否显著提升三、结论一、项目背景A/B test在评估不同项目的效果和优劣时由非常大的作用,在目前的互联网领域得到了广泛的应用,本分析以支付宝某次营销活动为例,分别统计两组营销方案的点击率,通过A/B测试计算比较两种策略的投放效果。数据来源于阿里云天池Audience Expansion Dataset在本次分析中,我们只使用到effect_tb.cs
原创
发布博客 2022.05.10 ·
49 阅读 ·
0 点赞 ·
0 评论

A/B test 总结

A/B test是一种通过制定两个方案,在同一时间段分别让**成分相同(相似)**的用户群随机使用一个方案,收集各群组的用户体验数据和业务数据,最后根据显著性检验分析评估出最好版本正式采用。01 A/B test的目的1、 判断哪个更好2、计算收益,ROI02 A/B test的一般流程与PM沟通,分析现状,确定改进点;确认观测指标,即是否成功的标准;设计优化版本的原型并完成开发;确定测试时长:时长不宜过短,会导致测试用户全为高频率用户;确定实验流量:分流要保证同时性和相似性;测试并收
原创
发布博客 2022.01.21 ·
288 阅读 ·
0 点赞 ·
0 评论

SQL基础入门【4】函数

教程参考:菜鸟教程datawhale-wonderfulsql 3.3 各种各样的函数数学函数ABS – 绝对值语法:ABS( 数值 )ABS 函数用于计算一个数字的绝对值,表示一个数到原点的距离。当 ABS 函数的参数为NULL时,返回值也是NULL。MOD – 求语法:MOD( 被除数,除数 )MOD 是计算除法余数(求余)的函数,是 modulo 的缩写。小数没有余数的概念,只能对整数列求余数。注意:主流的 DBMS 都支持 MOD 函数,只有SQL Server 不支持
原创
发布博客 2021.12.14 ·
312 阅读 ·
0 点赞 ·
0 评论

【数据分析】电商平台入驻商用户画像分析

电商平台入驻商数据分析思路1.1 互联网电商平台入驻商数据分析的一般思路获得数据 :前台数据(价格、销量、关键词,需要通过爬虫获得)+后台数据(广告数据、订单数据。平台提供的接口,入驻商自用统计软件,卖家报表界面)分析业务需求 :选品需求(从供应商联系货源,贴牌销售:打造自己的品牌or白牌销售:低价销售)(需要从用户偏好来反馈选品)、运营需求、营销需求产生数据成果 : 用户画像、商品画像、自动化程序/算法亚马逊前台数据落地页可以看到商品的图片,名称,评分,价格,颜色,尺码,买家
原创
发布博客 2021.12.08 ·
1920 阅读 ·
0 点赞 ·
1 评论

【三节课数据分析】ch3.数据分析的九种方法

文章目录01 对比分析比什么?02 多维度拆解案例说明 数据涨跌如何处理03 漏斗观察案例常见的渠道划分方式渠道质量跟踪04 分布情况常见的群体划分05 用户留存的分析方法一般的计算方式案例某批漫画对付费会员转化的效果评估(漏斗分析、用户分群)某一主播对产品价值的影响(精准留存对比)上线以探索更长期的产品潜力06 用户画像6.1 标签有哪些?6.2 标签从哪儿来?6.3 案例高质量拉新07 归因查找末次归因递减归因首次归因案例 精准运营运营资源盘活用自动化的方法推送与用户有关的内容08 路径挖掘09 行为序
原创
发布博客 2021.12.03 ·
1746 阅读 ·
0 点赞 ·
0 评论

SQL中的时间函数

DATE(date) #提取日期或日期/时间表达式的日期部分,date参数是合法的日期表达式。## DATE('2008-11-11 13:23:44.657') ## 2008-11-11 DAY() #返回一个整数值,表示指定日期的月份中的第几天## DAY('2008-11-11 13:23:44.657')## 11时间差DATEDIFF(date1, date2):# 前-后#得到的结果是date1与date2相差的天数。#如果date1比date2大,结果为正;如果
原创
发布博客 2021.12.01 ·
101 阅读 ·
0 点赞 ·
0 评论

【三节课数据分析】ch1.指标建模

指标建模对当前业务有参考价值的统计数据。在开始之前,先用一个例子说明,如何用数据指导业务。小明在某便利店工作,一天,老板让小明想办法让总销售额提高20%。总销售额是什么? GMV = 客单价 * 付费人次因此有两种途径可以提高总销售额:一是提高客单价,显然不合理,但小明发现最近购买饮料的人很多;二是增加付费人数(付费单数)小明通过记正字的方法记录路过人数和进店人数及消费人数,之后慢慢发展成用计数器…excel计算。小明发现,现在的路过人数-进店人数的转化率为5%,进店人数-付费人数的转化率为
原创
发布博客 2021.12.01 ·
142 阅读 ·
0 点赞 ·
0 评论

七周成为数据分析师 第一周:数据分析思维

视频链接:【秦路】七周成为数据分析师《第一周:数据分析思维》数据课件及数据—链接:百度云链接提取码:io6g数据分析的三种思维结构化在做数据分析的过程中,我们往往会出现想到一点是一点的感觉,一次性分析,没有复用性,比如下面这个例子。现在有一个线下销售的产品。我们发现8月的销售额度下降,和去年同比下降了20%。我想先观察时间趋势下的波劢,看是突然暴跌,还是逐渐下降。再按照丌同地区的数据看一下差异,有没有地区性的因素影响。我也准备问几个销售员,看一下现在的市场环境怎么样,听说有几家竞争对手也缩
原创
发布博客 2021.09.01 ·
109 阅读 ·
0 点赞 ·
0 评论

力扣数据库(end09.02)

175 组合两个表表1: Person+-------------+---------+| 列名 | 类型 |+-------------+---------+| PersonId | int || FirstName | varchar || LastName | varchar |+-------------+---------+PersonId 是上表主键表2: Address+-------------+---------+|
原创
发布博客 2021.09.01 ·
55 阅读 ·
0 点赞 ·
0 评论

【2021.08】python会员数据化运营task2

基于RFM的精细化用户管理1.案例背景对用户进行分组可以更好的了解用户价值。本案例使用某企业四年的家电订单数据,使用RFM模型对用户进行分组,基于业务部门的用户分群需求,我们计划将RFM的3个维度分别作3个区间的离散化,这样出来的用户群体最大有27个。从交付结果看,给业务部门做的分析结果都要导出成Excel文件,用于做后续分析和二次加工使用。另外,RFM的结果还会供其他模型的建模使用,RFM本身的结果可以作为新的局部性特征,因此数据的输出需要有本地文件和写数据库两种方式。本节案例选择了4年的订单数据
原创
发布博客 2021.08.31 ·
68 阅读 ·
0 点赞 ·
0 评论

【2021.08】python会员数据化运营task01

文章目录学习目的学习目的1、了解企业数据化运营中,运用数据工具对会员进行运营的思路和方法2、了解RFM模型的运用3、掌握Python处理数据的技巧4、掌握EXCEL表的可视化图表及透视工具
原创
发布博客 2021.08.22 ·
211 阅读 ·
1 点赞 ·
0 评论

MySQL基础入门【#】习题篇18 - 34

文章目录18 列出薪水比smith多的所有员工信息19 列出所有"CLERK"(办事员)的姓名及其部门名称,部门的人数.20 列出最低薪金大于1500的各种工作及从事此工作的全部雇员人数21 列出在部门"SALES"<销售部>工作的员工的姓名,假定不知道销售部的部门编号.MySQL下载请查看:MySQL基础入门【1】下载与使用Part1笔记:MySQL基础入门【2】Part2笔记:MySQL基础入门【3】动力节点入门视频链接:MySQL基础入门-mysql教程-数据库实战(MySQL
原创
发布博客 2021.08.13 ·
27 阅读 ·
0 点赞 ·
0 评论

MySQL基础入门【#】习题篇1-17

文章目录01 取得每个部门最高薪水的人员名称02 那些人的薪水在部门的平均薪水之上03 取得部门中(所有人的)平均薪水等级04 不准用组函数,取得最高薪水05 取得平均薪水最高的部门编号(两种方法)06 取得平均薪水最高的部门的部门名称07 求平均薪水等级最低的部门的部门名称08 取得比普通员工(员工代码没有出现在mgr字段上的)最高薪水还要高的领导人姓名09 取得薪水前五名的员工10 取得薪水第六到第十的员工11 取得最后入职的5名员工12 取得每个薪水等级有多少员工MySQL下载请查看:MySQL基
原创
发布博客 2021.08.13 ·
35 阅读 ·
0 点赞 ·
0 评论

MySQL基础入门【3】

文章目录13 补充知识,查询结果的去重14 连接查询14.1 什么是连接查询?14.2 连接查询的分类?14.3 基础知识补充,表的别名14.4 内连接等值连接非等值连接自连接14.5 外连接14.6 三张表怎么连接查询?15 子查询15.1 什么是子查询?子查询都可以出现在哪里?15.2 where 子句中使用子查询15.3 from后面嵌套子查询15.4 在select后面嵌套子查询16 union16.2 规则17 limit (重要!)17.1 语法机制17.2 sql的分页机制17.3 limit
原创
发布博客 2021.08.12 ·
30 阅读 ·
0 点赞 ·
0 评论

MySQL基础入门【2】

文章目录01登陆02 sql DB DBMS分别是什么,他们之间的关系03 什么是表3.1 SQL语句的分类04 导入数据05 对SQL脚本的理解06 查看表的结构和数据结构6.1 表中的数据07 常用命令7.1 创建数据库7.2 select database(); 查看当前使用的是哪个数据库7.3 select version(); 查看mysql的版本号。7.4 终止一条语句命令7.5 退出mysql7.6 查看创建表的语句08 简单查询语句(DQL)8.1 语法格式:8.2 示例09 条件查询9.1
原创
发布博客 2021.08.12 ·
22 阅读 ·
0 点赞 ·
0 评论

MySQL基础入门【1】MySQL下载与使用

文章目录Mysql下载与使用下载安装初次使用笔记内容参考动力节点MySQL入门课程学习,b站视频链接:MySQL基础入门-mysql教程-数据库实战(MySQL基础+MySQL高级+MySQL优化+MySQL34道作业题)Mysql下载与使用下载参考链接:小白入门:MySQL超详细安装教程(mac版)茶拉斯图拉突然发现不知道之前下载什么东西的时候安装了迅雷,迅雷是真的快啊。1.打开官网进入macOS系统版本Download MySQL Community Serverdev.mysql.com
原创
发布博客 2021.08.12 ·
38 阅读 ·
0 点赞 ·
0 评论

【2021.07】datawhale组队学习李宏毅 总结

文章目录01机器学习介绍02 回归step1:modelstep2:评价一个模型的好坏step3:使用gradient descent进行优化优化03 误差估测方差和偏差偏差 v.s. 方差04 训练集划分交叉验证N-fold cross validation05 gradient descent06 深度学习step1:神经网络step2:模型评估step3:选择最优函数0708 卷积神经网络CNN特征CNN架构对这一期的组队学习内容进行总结梳理。01机器学习介绍【2021.07】datawhale
原创
发布博客 2021.07.25 ·
212 阅读 ·
0 点赞 ·
1 评论

【2021.07】datawhale组队学习李宏毅task06

本笔记为datawhale7月组队学习笔记,视频链接:李宏毅《机器学习》 p21 李宏毅《机器学习》 p21 卷积神经网络开源文档:卷积神经网络文章目录为什么用CNN?small regionSame patternsSubsamplingCNN架构ConvolutionProperty 1Property 2convolution 和 fully connected之间的关系Max poolingFlattenCNN in KerasCNN学到了什么?分析全连接层让图更像数字Deep DreamDee
原创
发布博客 2021.07.25 ·
25 阅读 ·
0 点赞 ·
0 评论

【2021.07】datawhale组队学习李宏毅task05

文章目录Small gradient如何分辨local minima 和 saddle point?为什么我们想要知道是卡在local minima 还是 saddle point呢?Warning of MathTayler Series Approximation如果卡在saddle pointBatch and Momentumsmall batch v.s. large batchLarger batch size does not require longer time to compute gr
原创
发布博客 2021.07.21 ·
22 阅读 ·
0 点赞 ·
0 评论
加载更多