在使用softmax时,需要对不同维度的数据进行适配,以及防止数据溢出。
def softmax(a):
c = np.max(a)
exp_a = np.exp(a-c)
sum_exp_a = np.sum(exp_a)
y = exp_a / sum_exp_a
return y
def _softmax(x):
if x.ndim == 2:
x = x.T
x = x - np.max(x, axis=0)
y = np.exp(x) / np.sum(np.exp(x), axis=0)
return y.T
x = x - np.max(x) # 溢出对策
return np.exp(x) / np.sum(np.exp(x))
def __softmax(x):
orig_shape=x.shape
print("orig_shape",orig_shape)
if len(x.shape)>1:
#矩阵
tmp=np.max(x,axis=1)
x-=tmp.reshape((x.shape[0],1))
x=np.exp(x)
tmp=np.sum(x,axis=1)
x/=tmp.reshape((x.shape[0],1))
print("matrix")
else:
#向量
tmp=np.max(x)
x-=tmp
x=np.exp(x)
tmp=np.sum(x)
x/=tmp
print("vector")
return x
print(softmax(np.array([1,2,3,4,5])))
print(softmax(np.array([[1,2,3,4,5],[1,2,4,3,5]])))
print(_softmax(np.array([1,2,3,4,5])))
print(_softmax(np.array([[1,2,3,4,5],[1,2,4,3,5]])))
print(__softmax(np.array([1,2,3,4,5])))
print(__softmax(np.array([[1,2,3,4,5],[1,2,4,3,5]])))