【豆包】电脑版体验小结 --系统级AI工具

粗略体验了一天时间,做下小结:
结论:
总结:4分(满分5分),暂不能完美替代浏览器,其余均可圈可点,未来可期,推荐尝试使用


体验版本:1.37.6

缺点:

⭐⭐浏览器功能:同基于chromium内核,但与主流浏览器(Chrome、Edge)在体验上差距较为明显,主要体现在

  • 流畅度较差:遇到两三次明显卡顿现象。
  • 内存占用高。
  • 浏览器功能完善度低:当前版本具备基本浏览器功能,常用的标签页组等不具备。
  • 插件体验问题(可能存在):当前安装的油猴、DarkReader等插件,体验上均不如Edge浏览器。

优点:

  • ⭐⭐⭐与浏览器结合的内容:
    • ai搜索
    • 网页文本总结、脑图总结等
    • 视频总结
  • ⭐⭐⭐与系统结合的内容
    • 截图ai处理(文字识别,分析总结等)
    • 全局唤起
    • 文档解读
    • ai阅读
    • ai生图
    • ai写作
  • ⭐⭐⭐⭐与编码结合的内容
    • MarsCode AI
      • 生成Doc
      • 代码解读
      • 单元测试
      • 代码补全

信息补充说明:

  • 体验主机配置信息:
    在这里插入图片描述在这里插入图片描述
### 对Qwen 2.5-7B模型应用LoRA微调技术 #### 安装依赖库 为了能够顺利地对Qwen 2.5-7B模型进行LoRA微调,需要安装必要的Python包。这通常包括`transformers`、`peft`以及其他可能用到的数据处理工具。 ```bash pip install transformers peft datasets evaluate accelerate bitsandbytes ``` #### 加载预训练模型与分词器 加载Hugging Face上的Qwen 2.5-7B模型及其对应的分词器是开始微调的第一步。通过指定正确的模型名称可以轻松完成此操作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "Qwen/Qwen-7B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True ) ``` #### 配置并初始化LoRA适配层 接下来,在原始模型基础上添加LoRA参数高效的调整能力。这里会涉及到设置一些超参数来控制LoRA的行为模式,比如秩大小(r)以及目标模块的选择等。 ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, # LoRA attention dimension lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", ) model = get_peft_model(model, lora_config) ``` #### 准备数据集 对于特定任务(如对话系统),准备合适的数据集至关重要。如果是以中文法律问答为例,则应采用专门为此场景设计的数据集DISC-Law-SFT来进行训练[^2]。 ```python from datasets import load_dataset dataset = load_dataset('path_to_DISC_Law_SFT') ``` #### 训练配置与启动 定义好优化算法和其他训练选项之后就可以正式开启训练流程了。考虑到资源的有效利用,建议合理设定batch size、epoch数量等参数,并考虑使用混合精度加速计算效率。 ```python import torch from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="steps", evaluation_strategy="epoch", fp16=True, # Enable mixed precision training. ) trainer = Trainer( model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data, tokenizer=tokenizer, ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值