【10分钟本地部署大语言模型】借助1Panel、MaxKb、Ollama快速部署大语言模型(qwen、llama等)及知识库

前言:

本文介绍一种快速在Linux服务器(windows使用wsl也可以)上部署大语言模型(含知识库)的方式。
核心内容如下:

  • 1Panel开源的Linux 服务器运维管理面板,通过该面板安装ollama和MaxKB
  • ollama开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型
  • MaxKB:基于大语言模型和 RAG 的开源知识库加粗样式问答系统,此组件也可用于页面的方式加载ollama
    整个安装操作极其简单丝滑,网络流畅的情况下,十分钟即可完成,下面简要介绍具体操作:

一、安装1Panel

注意:安装过程中会显示账号密码,这个要保存下来
参考该文档即可,约3分钟
https://1panel.cn/docs/installation/package_installation/

二、安装ollama、maxkb

2.1 安装

登录1Pannel,比如我的地址是:http://127.0.0.1:42640/
点击应用商店,并搜索安装ollama、maxkb
注意:

  • 这个时候,你可能会遇到网络连接问题,只需要配置镜像加速即可,配置内容为https://docker.1panel.live,如下下图:
  • 安装的时候,注意端口不要冲突
    在这里插入图片描述
    在这里插入图片描述
    至此,完成ollama、maxkb的安装(maxkb默认的账号密码 admin/MaxKB@123..
    在这里插入图片描述

2.2 验证

可分别点击服务端口,进行访问。其中,ollama访问的界面如下:
第一次需要配置服务器地址:
在这里插入图片描述
在这里配置ip即可
在这里插入图片描述

在这里插入图片描述

三、ollama加载大模型

3.1 进入ollama容器

进入服务器,查看docker进程,docker ps
在这里插入图片描述

3.2 加载大模型

进入ollama容器,并下载(加载)大模型docker exec -it 0abdc5ce45ae /bin/bash
进入ollama官网,搜索你所需要的大模型,比如这里我用到了qwen2.5 3B参数的模型,复制ollama run qwen2.5:3b命令,并在容器中运行即可。
在这里插入图片描述
出现success即可,便可以在终端进行对话:
在这里插入图片描述

四、MaxKB集成ollama的大模型

4.1 添加模型

登录MaxKB,系统管理 - 模型设置 - 添加模型
在这里插入图片描述
按照如下填写:
在这里插入图片描述

  • 基础模型:要和你的容器中ollama的名字相同,可通过ollama list查看
  • 在这里插入图片描述
  • 域名:是你的ollama的域名
  • API Key:随便填写即可,我写的12345

4.2 创建应用

在这里插入图片描述
在这里插入图片描述
选择ai模型,保存即可
在这里插入图片描述

4.3 演示效果

在应用界面,点击该按钮,就能出险熟悉的对话框了
在这里插入图片描述
在这里插入图片描述

五、知识库的创建与集成

可参考:https://maxkb.cn/docs/quick_start/

5.1 创建知识库

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.2 关联知识库

在已创建的应用中关联知识库即可。
在这里插入图片描述


参考资料:
https://1panel.cn/docs/
https://maxkb.cn/docs/

<think>好的,我现在需要帮助用户了解如何在本地使用MaxKB并导入Ollama模型。首先,我得回忆一下MaxKBOllama的相关信息。MaxKB是一个基于LLM的知识库问答系统,而Ollama是一个本地运行大模型的工具,支持很多开源模型,比如Llama 2、Mistral等。用户的问题是如何在MaxKB中导入本地Ollama模型,可能他们在尝试搭建自己的问答系统时需要整合这两个工具。 首先,我需要确认用户的环境是否正确安装和配置。可能的步骤包括安装Ollama,下载所需模型,然后在MaxKB中添加模型。但具体的操作步骤可能需要更详细的说明。比如,用户是否已经安装了Ollama?是否已经下载了模型?MaxKB的安装方式是什么?是Docker还是直接安装? 然后,我需要考虑MaxKB如何与Ollama交互。通常,Ollama会在本地提供一个API接口,比如http://localhost:11434,MaxKB可能需要通过这个接口来调用模型。因此,在MaxKB中添加模型时,可能需要选择Ollama作为模型类型,并配置相应的API地址和模型名称。 接下来,我需要考虑可能的常见问题。比如,用户是否启动了Ollama服务?模型名称是否正确?端口是否被防火墙阻挡?权限问题是否存在?此外,MaxKB的版本是否支持Ollama的集成?是否需要额外的配置步骤? 另外,可能需要分步骤指导用户:1. 安装Ollama并下载模型;2. 启动Ollama服务;3. 在MaxKB中添加模型,选择Ollama类型,填写API地址和模型名称;4. 测试连接是否成功。 可能还需要验证步骤,比如在终端用curl测试Ollama的API是否正常响应,确保MaxKB能访问到本地的服务。如果用户遇到问题,可能需要检查日志,或者查看MaxKB的文档是否有特别的要求。 此外,是否有不同的安装方式会影响步骤?例如,如果用户用Docker运行MaxKB,可能需要配置Docker网络,使得容器能够访问宿主机的Ollama服务,这时候可能需要使用host网络或者指定IP地址。 最后,是否需要提供具体的命令示例,比如如何用Ollama拉取模型,如何配置MaxKB的界面等。用户可能需要具体的代码块或截图,但在这里只能提供文字说明。 总结,我需要分步骤详细说明安装Ollama、下载模型、配置MaxKB的过程,并提醒常见问题和解决方法。同时,要确保语言清晰,步骤明确,让用户能够按照指引操作成功。</think>以下是在本地使用 MaxKB 并导入 Ollama 模型的详细步骤: --- ### **1. 环境准备** - **安装 Ollama** 访问 [Ollama 官网](https://ollama.ai/),根据你的操作系统下载并安装。 **Windows**:直接运行安装程序。 **Linux/macOS**:通过终端一键安装: ```bash curl -fsSL https://ollama.ai/install.sh | sh ``` - **下载模型** 通过 Ollama 下载所需的开源模型(例如 Llama2): ```bash ollama pull llama2 # 替换为其他模型名称如 "mistral"、"qwen" 等 ``` - **启动 Ollama 服务** 安装后服务会自动启动。手动启动或重启命令: ```bash ollama serve ``` --- ### **2. 验证 Ollama 是否正常运行** - **测试模型本地调用** 在终端运行以下命令测试模型是否能响应: ```bash ollama run llama2 "你好,介绍一下你自己" ``` 或通过 API 测试: ```bash curl http://localhost:11434/api/generate -d '{ "model": "llama2", "prompt": "Hello" }' ``` --- ### **3. 安装 MaxKB** - **Docker 部署(推荐)** MaxKB 官方推荐使用 Docker 快速部署: ```bash docker run -d --name=maxkb -p 8080:80 -v ~/.maxkb:/var/www/html/data maxkb/maxkb ``` 访问 `http://localhost:8080` 进入 MaxKB 界面。 - **手动安装** 从 [MaxKB GitHub](https://github.com/1Panel-dev/MaxKB) 下载源码或 release 包,按文档编译运行。 --- ### **4. 在 MaxKB 中导入 Ollama 模型** 1. **登录 MaxKB 管理界面** 默认账号密码:`admin` / `MaxKB@123..`(首次登录需修改)。 2. **添加模型** - 进入 **模型管理 > 大模型设置 > 添加模型**。 - **模型类型** 选择 `Ollama`。 - **模型名称** 填写 Ollama 下载的模型名(如 `llama2`)。 - **Base URL** 填写 `http://localhost:11434`(Ollama 默认端口)。 - 其他参数(如 API Key)留空(除非 Ollama 配置了认证)。 3. **保存并测试连接** 点击 **测试模型连接** 确认 MaxKB 能成功调用 Ollama。 --- ### **5. 常见问题解决** - **连接失败** - 检查 Ollama 服务是否运行(`ollama list`)。 - 确保 MaxKBOllama 在同一网络环境(若使用 Docker,尝试 `--network=host` 或指定宿主 IP `http://host.docker.internal:11434`)。 - 关闭防火墙或开放端口 `11434`。 - **模型名称错误** 通过 `ollama list` 确认本地已下载的模型名称。 - **性能问题** 调整 Ollama 的 `num_ctx`(上下文长度)或 MaxKB 的 `max_tokens` 参数。 --- ### **6. 进阶配置(可选)** - **自定义模型参数** 在 Ollama 中创建 `Modelfile` 调整参数(如温度、重复惩罚): ```text FROM llama2 PARAMETER temperature 0.7 PARAMETER num_ctx 4096 ``` 构建自定义模型: ```bash ollama create my-llama2 -f Modelfile ``` 在 MaxKB 中使用 `my-llama2` 作为模型名称。 - **多模型切换** 重复步骤 4,添加多个 Ollama 模型,并在 MaxKB 知识库设置中按需选择。 --- 通过以上步骤,你可以在本地部署MaxKB 中集成 Ollama 模型,构建私有化知识库问答系统。如果遇到具体问题,可提供更多细节进一步排查。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值