Tensorflow1.15-gpu 安装镜像

Tensorflow 1.15 gpu 安装镜像

pip install tensorflow-gpu==1.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

### 安装准备 为了在 Conda 环境下成功安装 GPU 版本的 TensorFlow 1.15,需先确认计算机已配备支持 CUDA 的 NVIDIA 显卡并安装了相应的驱动程序[^3]。 ### 创建新的 Conda 虚拟环境 创建一个新的 Conda 虚拟环境来隔离不同项目之间的依赖关系。这一步骤有助于避免包冲突和兼容性问题: ```bash conda create -n tf1_15_gpu python=3.6 ``` 激活新创建的虚拟环境: ```bash conda activate tf1_15_gpu ``` ### 安装必要的CUDA工具包和cuDNN库 对于 TensorFlow 1.15 来说,推荐使用的 CUDA 工具包版本为 10.0 和 cuDNN 库版本为 7.6。通过以下命令可以在当前活跃的 Conda 环境中安装这些组件: ```bash conda install cudatoolkit=10.0 conda install cudnn=7.6 ``` ### 安装 Tensorflow-GPU 1.15 完成上述准备工作之后,可以通过 `pip` 命令从国内镜像源快速下载并安装特定版本的 TensorFlow-GPU: ```bash pip install tensorflow-gpu==1.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/ ``` 注意这里使用的是清华大学开源软件镜像站作为索引 URL, 这样可以显著提高下载速度。 ### 验证安装是否成功 最后验证 TensorFlow 是否能够正确识别到 GPU 设备,在 Python 解释器内运行如下测试代码片段: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) ``` 如果一切正常,则会显示可用的 GPU 数量;若有任何错误提示,请参照官方文档或其他资源排查可能存在的配置失误或硬件不匹配等问题[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值