前言
本节中,结合《Image Processing,Analysis,and Mechine Vision》这本书对信号采样中的奈奎斯特定理作一个简单的证明,并且以2D图像为例进行阐释。
证明过程
假设一个图像在点 x = j Δ x , y = k Δ y , f o r x=j\Delta x,y=k \Delta y,\rm{for} x=jΔx,y=kΔy,for j = 1 , . . . M j=1,...M j=1,...M并且 k = 1 , . . . , N k=1,...,N k=1,...,N,因此在 x x x轴和 y y y轴上两个相邻采样点的间隔分别为 Δ x \Delta x Δx和 Δ y \Delta y Δy,该离散图像可以表示为 f ( j Δ x , k Δ y ) f(j\Delta x,k \Delta y) f(jΔx,kΔy).我们也可以使用满足Dirac分布 δ \delta δ集来表示规则网格中的理想采样函数 s ( x , y ) s(x,y) s(x,y).
s ( x , y ) = ∑ j = 1 M ∑ k = 1 N δ ( x − j Δ x , y − k Δ y ) (1) s(x,y) = \sum_{j=1}^{M} \sum_{k=1}^{N} \delta(x-j\Delta x,y-k\Delta y) \text { (1)} s(x,y)=j=1∑