奈奎斯特采样定理—以二维图像为例

前言

本节中,结合《Image Processing,Analysis,and Mechine Vision》这本书对信号采样中的奈奎斯特定理作一个简单的证明,并且以2D图像为例进行阐释。

证明过程

假设一个图像在点 x = j Δ x , y = k Δ y , f o r x=j\Delta x,y=k \Delta y,\rm{for} x=jΔx,y=kΔy,for j = 1 , . . . M j=1,...M j=1,...M并且 k = 1 , . . . , N k=1,...,N k=1,...,N,因此在 x x x轴和 y y y轴上两个相邻采样点的间隔分别为 Δ x \Delta x Δx Δ y \Delta y Δy,该离散图像可以表示为 f ( j Δ x , k Δ y ) f(j\Delta x,k \Delta y) f(jΔx,kΔy).我们也可以使用满足Dirac分布 δ \delta δ集来表示规则网格中的理想采样函数 s ( x , y ) s(x,y) s(x,y).
s ( x , y ) = ∑ j = 1 M ∑ k = 1 N δ ( x − j Δ x , y − k Δ y )  (1) s(x,y) = \sum_{j=1}^{M} \sum_{k=1}^{N} \delta(x-j\Delta x,y-k\Delta y) \text { (1)} s(x,y)=j=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值