kaggle中使用低版本的tensorflow时GPU占用率很低

前言

本人也是kaggle新手,在使用kaggle中的notebook运行本地训练好的模型作推理时,即使使用了GPU,速度依然很慢,并且可以看到GPU的占用率为0,经过多方得知在kaggle中只有最新版本的tensorflow才能使用GPU,这个版本也是kaggle镜像内置的版本,个人当然可以指定老一点的版本,直接运行

!pip install tensorflow==xxx

即可,但是这样用不了GPU,没办法,只能使用新版本的tensorflow重新训练模型了。

-------------------------------------------------------------------

更新:很奇怪,好像基于tensorflow-gpu 1.15训练的模型可以直接被2.3.1版本的tensorflow加载,GPU占用率也上去了。

参考

https://www.kaggle.com/general/135035
https://www.kaggle.com/deshmane/tensorflow-old-version
https://www.kaggle.com/product-feedback/124017

根据引用\[1\]的信息,如果你想要使用GPU来加速TensorFlow模型的训练,首先需要确保你已经正确安装了所需的GPU库。你可以参考TensorFlow官方网站上的指南来下载和设置所需的库。如果你遇到了一些GPU库缺失的问题,那么可能会出现无法加载GPU设备的情况。 另外,根据引用\[2\]和引用\[3\]的建议,你可以尝试以下几种方法来提高TensorFlow模型的GPU利用率: 1. 增加batch size:增加批量大小可以增加GPU内存的使用率,从而提高GPU利用率。 2. 在数据加载过程进行优化:对于PyTorch框架,你可以调整Dataloader的参数,如num_workers和pin_memory,来提高数据加载的速度。对于TensorFlow,将数据从float类型转换为tensor,并使用tf.data.Dataset.from_tensor_slices来预处理数据,可以减少CPU在数据预处理和读取上的使用,增加GPU的利用率。 综上所述,你可以通过安装所需的GPU库并尝试上述方法来提高TensorFlow模型的GPU利用率。 #### 引用[.reference_title] - *1* [Kaggle平台上运行TensorFlowGPU利用率为0](https://blog.csdn.net/weixin_43643900/article/details/123025132)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Tensorflow模型GPU使用的问题](https://blog.csdn.net/weixin_50767274/article/details/127173198)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值