东北大学应用数理统计知识点总结——贝叶斯估计

贝叶斯估计

一、基础知识

1.1 常用分布函数
  • X ~ B ( α , β ) B(\alpha, \beta) B(α,β) f ( x ) = y α − 1 ( 1 − y ) β − 1 f(x) = y^{\alpha - 1}(1-y)^{\beta - 1} f(x)=yα1(1y)β1
    E ( x ) = α α + β E(x) = \frac{\alpha}{\alpha + \beta} E(x)=α+βα
  • X ~ Γ ( α , β ) \Gamma(\alpha, \beta) Γ(α,β) f ( x ) = β α Γ ( α ) x α − 1 e − β x , x > 0 , α > 0 , β > 0 f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x},x>0,\alpha >0, \beta >0 f(x)=Γ(α)βαxα1eβx,x>0,α>0,β>0
    E ( x ) = α β , D ( x ) = α β 2 , E ( x 2 ) = α 2 + α β 2 E(x) = \frac{\alpha}{\beta}, D(x) = \frac{\alpha}{\beta^2}, E(x^2) = \frac{\alpha^2 + \alpha}{\beta^2} E(x)=βα,D(x)=β2α,E(x2)=β2α2+α
  • X ~ I Γ ( α , β ) I \Gamma(\alpha, \beta) IΓ(α,β) f ( x ) = β α Γ ( α ) x α + 1 e − β x , x > 0 , α > 0 , β > 0 f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha+1}e^{-\beta x},x>0,\alpha >0, \beta >0 f(x)=Γ(α)βαxα+1eβx,x>0,α>0,β>0
    E ( 1 x ) = α β , D ( 1 x ) = α β 2 , E ( 1 x 2 ) = α 2 + α β 2 E(\frac{1}{x}) = \frac{\alpha}{\beta}, D(\frac{1}{x}) = \frac{\alpha}{\beta^2}, E(\frac{1}{x^2}) = \frac{\alpha^2 + \alpha}{\beta^2} E(x1)=βα,D(x1)=β2α,E(x21)=β2α2+α
1.2 相关定义
  • 损失函数 L ( θ , a ) L(\theta, a) L(θ,a) :表示用 a 去估计 θ \theta θ 时所造成的的损失。(平方差损失函数、平方相对差损失函数、加权平方差损失函数、绝对差损失函数)

  • 决策函数 d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) d(\xi_1, \xi_2, ··· , \xi_n) d(ξ1,ξ2,,ξn) :决策 a,它是一个随机变量,所对应的损失为 L [ θ , d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) ] L[\theta, d(\xi_1, \xi_2, ··· , \xi_n)] L[θ,d(ξ1,ξ2,,ξn)]

  • 风险函数 R ( θ , d ) R(\theta, d) R(θ,d):是损失函数在参数为 θ \theta θ 时的数学期望,代表了使用 d d d 估计 θ \theta θ 时所造成的平均损失
    R ( θ , d ) = E θ { L [ θ , d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) ] } R(\theta, d) = E_\theta \{ L[\theta, d(\xi_1, \xi_2, ··· , \xi_n)] \} R(θ,d)=Eθ{L[θ,d(ξ1,ξ2,,ξn)]}

  • 最大风险最小化估计量、极小极大估计量 :P66页,例2.5.1

  • 贝叶斯风险函数 B ( d ) B(d) B(d) B ( d ) B(d) B(d) 为决策函数 d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) d(\xi_1, \xi_2, ··· , \xi_n) d(ξ1,ξ2,,ξn) 的贝叶斯风险函数
    B ( d ) = E { L [ θ , d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) ] } = E { E ( L [ θ , d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) ] ∣ θ ) } B(d) = E \{ L[\theta, d(\xi_1, \xi_2, ··· , \xi_n)] \} = E \{ E(L[\theta, d(\xi_1, \xi_2, ··· , \xi_n)]| \theta) \} B(d)=E{L[θ,d(ξ1,ξ2,,ξn)]}=E{E(L[θ,d(ξ1,ξ2,,ξn)]θ)}
    = E { E ( L [ θ , d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) ] ∣ ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) } = E \{ E(L[\theta, d(\xi_1, \xi_2, ··· , \xi_n)]| \xi_1, \xi_2, ··· , \xi_n) \} =E{E(L[θ,d(ξ1,ξ2,,ξn)]ξ1,ξ2,,ξn)}

  • 贝叶斯估计量、贝叶斯解 d ~ ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) \tilde{d}(\xi_1, \xi_2, ··· , \xi_n) d~(ξ1,ξ2,,ξn) B ( d ~ ) = m i n d ∈ G { B ( d ) } B(\tilde{d}) = min_{d \in G} \{B(d)\} B(d~)=mindG{B(d)}

  • :如果函数 φ ( x ) \varphi(x) φ(x) 与函数 f ( x ) f(x) f(x) 只相差一个常熟因子,则称 φ ( x ) \varphi(x) φ(x) f ( x ) f(x) f(x) 的核,记为
    f ( x ) ∝ φ ( x ) f (x) \propto \varphi(x) f(x)φ(x)

二、所用公式

h ( y ∣ x 1 , ⋅ ⋅ ⋅ , x n ) = π ( y ) f ( x 1 , ⋅ ⋅ ⋅ , x n ∣ y ) ∫ − ∞ ∞ f ( x 1 , ⋅ ⋅ ⋅ , x n ∣ y ) d F θ ( y ) ∝ π ( y ) f ( x 1 , ⋅ ⋅ ⋅ , x n ∣ y ) h(y|x_1, ···, x_n) = \frac{\pi(y)f(x_1, ···, x_n | y )}{\int_{-\infty}^{\infty}f(x_1, ···, x_n | y)dF_\theta(y)} \propto \pi(y)f(x_1, ···, x_n | y ) h(yx1,,xn)=f(x1,,xny)dFθ(y)π(y)f(x1,,xny)π(y)f(x1,,xny)

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值