卷积神经网络-卷积输出维度公式的理解记忆

本文解释了卷积操作后输出图像尺寸的计算方法,包括公式推导和实际应用场景,如检查维度不匹配错误以及在PyTorch转ONNX时处理padding。
摘要由CSDN通过智能技术生成

卷积后特征图大小计算

假设输入图像的尺寸为 H i n × W i n H_{in} \times W_{in} Hin×Win,步长stride为 s s s, 填充的圈数 padding为 p p p,
卷积核的大小为 H k × W k H_{k} \times W_{k} Hk×Wk,则计算经过该卷积后 输出图像(feature map)尺寸 H o u t × W o u t H_{out} \times W_{out} Hout×Wout公式为
H o u t = H i n − H k + 2 × p s + 1 H_{out} = \frac{H_{in} - H_{k} +2 \times p}{s}+1 Hout=sHinHk+2×p+1

W o u t = W i n − W k + 2 × p s + 1 W_{out} = \frac{W_{in} - W_{k} +2 \times p}{s}+1 Wout=sWinWk+2×p+1

如何快速记住这个公式呢

H i n − H k + 2 × p s \frac{H_{in} - H_{k} +2 \times p}{s} sHinHk+2×p可以看成是路径/步长。卷积核每移动一步,就会得到一个输出。
+1是因为卷积核不移动的时候,也有一个初始的输出。考虑特殊情况,卷积核与原始图像一样大,这样就不需要移动,但也有一个输出。

公式用途

1.用于理解卷积过程中输出量维度的变化。在维度不匹配相关报错的时候,用于检测错误原因。
2.pytorch转onnx的时候对于 padding = "same"不支持。需要手动改成对应的padding。设置 H o u t = H i n H_{out}= H_{in} Hout=Hin W o u t = W i n W_{out} = W_{in} Wout=Win可计算padding的值。

参考链接: 教你如何记住卷积后图像大小的公式

  • 18
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值