深度学习环境配置
深度学习环境配置 平台:pycharm+anaconda 软件python+pytorch
使用深度学习训练神经网络需要先配置好环境,根据不同项目需求配置对应环境。我常用的是pycharm平台。记录下配置过程。
1. anaconda创建虚拟环境
conda是一个强大的包管理和环境配置工具,它提供了许多命令来管理Conda环境、安装和更新软件包、以及执行其他与conda相关的任务。以下是一些常用的conda命令:
conda activate env_name。激活指定的Conda环境。
conda deactivate。退出当前激活的环境
conda create --name env_name python=3.7。创建一个新的Conda环境,并指定使用的Python版本。
conda env remove -n env_name --all。删除指定的Conda环境。
conda install numpy。在当前环境中安装NumPy软件包。
conda update numpy。更新当前环境中的NumPy软件包到最新版本。
conda remove numpy。从当前环境中移除NumPy软件包。
conda info。显示当前Conda环境的详细信息,包括安装的版本、通道等。
conda list。列出当前环境中安装的所有软件包。
conda search numpy。搜索可用的Conda通道中安装的NumPy软件包。
conda config --add channels channels_name。添加一个新的Conda通道到配置中。
conda clean --all。移除不再需要的包和缓存文件。
conda env list 显示所有的环境
这些是conda命令中最常用的一些,还有许多其他命令和选项,可以通过查阅Conda文档或使用conda --help
命令来了解它们。
创建一个python版本为3.8环境主要步骤为
1.创建一个新的环境
conda create --name env_name python=3.8
2.激活
conda activate env_name
2. PyCharm中为项目设置解释器
路径 文件-设置-项目-添加解释器
3. 配置pytorch
需要使用gpu训练先查看cuda的版本
在cmd控制台输入nvcc --version (NVIDIA Cuda Compiler)
进入pytorch官网查找对应的版本。
最新的版本可以在 pytorch主页找到
之前版本要在以下链接中找
pytorch历史版本
cuda版本向下兼容, 我安装了以下版本
conda install pytorch1.9.0 torchvision0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch