笔记
文章平均质量分 75
H.Y.
这个作者很懒,什么都没留下…
展开
-
knowledge Graph综述笔记
knowledge Graph综述笔记知识图谱的起源知识图谱的定义知识图谱中包含三种节点:(实体、语义类、属性值)知识图谱构建的关键技术(一)知识提取1. 实体抽取2. 语义类抽取3. 属性和属性值抽取4. 关系抽取知识图谱的起源知识图谱于2012年5月17日由[Google]正式提出[6],其初衷是为了提高搜索引擎的能力,改善用户的搜索质量以及搜索体验。随着人工智能的技术发展和应用,知识图...原创 2020-03-18 21:08:39 · 538 阅读 · 0 评论 -
DenseNet笔记
DenseNet阅读笔记DenseNetDenseNet网络结构DenseNet优点DenseNet如果卷积网络在靠近输入的层与靠近输出的层之间包含更短的连接,那么卷积网络的深度可以显著增加,准确度更高,并且更易于训练。许多最近的研究致力于解决这个问题或相关的问题,这些不同的方法在网络拓扑和训练过程中有所不同,但它们都具有一个关键特性:它们创建从靠近输入的层与靠近输出的层的短路径。Dens...原创 2020-03-18 21:07:55 · 281 阅读 · 0 评论 -
DenseFusion论文笔记
DenseFusion论文笔记贡献主页地址(代码视频):https://sites.google.com/view/densefusion/GIthub代码地址:https://github.com/j96w/DenseFusion贡献提出了一种从RGB-D图像中估计一组已知对象的6-D位姿的通用框架DenseFusion整合了一个端到端迭代的位姿细化过程,进一步改进了位姿估计,同时实...原创 2020-03-18 21:07:07 · 1077 阅读 · 0 评论 -
yolo思路总结
yoloyolo1主要思想yolo2主要思想yolo1主要思想将输入图像分成 S×S 的网格,每个网格预测B个b-box和C个类别信息,输出就是S x S x (5*B+C)的一个tensor,其中,每个b-box包含(x,y,w,h,conf),如果有对象在网格中Pr=1,否则Pr=0conf=Pr(Object)∗IOUpredtruth.conf =Pr(Object)* I...原创 2020-03-18 21:05:37 · 497 阅读 · 0 评论 -
ResNets阅读笔记
ResNet阅读笔记ResNet论文笔记论文主要工作:残差网络提出的目的:解决网络退化问题ResNet论文笔记论文主要工作:提出了残差学习网络(ResNet)。ResNet更容易优化,并且可以从相当大程度上增加深度来获得精度。残差网络提出的目的:解决网络退化问题AlexNet 在 ILSVRC 一战成名后,卷积神经网络便一发不可收拾,后续的各类竞赛中各种神经网络都大发异彩,除了更高的准确...原创 2020-03-18 21:04:12 · 264 阅读 · 0 评论 -
VGG论文阅读笔记
论文阅读笔记VGG论文笔记论文主要工作:知识点:1. 小的卷积核2. 为什么用小conv.替换大conv.3.1*1卷积核作用VGG论文笔记论文主要工作:主要贡献是使用一个非常小(3×3)卷积过滤器的体系结构对深度不断增加的网络进行全面评估。知识点:1. 小的卷积核多次叠加小的卷积核可以达到大卷积核一样的卷积效果,并且能够使网络更深。如:33的卷积核叠加两次的卷积范围等效于55,叠加3...原创 2020-03-18 21:03:56 · 180 阅读 · 0 评论 -
分层softmax
分层softmax综述笔记分层softmax分层softmax输出层变成一颗树形二叉树,其实,输出层有V-1个节点 (二叉树的内部节点,V是词汇表单词数),映射层输出:Xw与每个中间节点相连,和普通全连接类似。只不过在计算概率的时候,采用了计算从二叉树根节点到目标词的概率,就是选择了路径对应的输出节点来计算概率。dw,j就是目标词第w对应路径的第j各节点是做还是右,θw,j是输出节点对...原创 2020-03-18 21:02:18 · 720 阅读 · 0 评论 -
6D姿态估计常见技术总结
姿态估计常技术PnP:Perspective-n-Point(PnP):RANSAC:随机抽样一致算法ICP:Iterative Closest PointFPS :PnP:Perspective-n-Point(PnP):PnP问题:根据图像中特征点的二维像素坐标及其对应的三维空间坐标,来估计相机在参考坐标系中位姿的一类算法思想:常见的是 根据n个3D-2D匹配点对,利用最小化重投影误差来...原创 2020-03-18 21:01:14 · 2373 阅读 · 0 评论 -
CNN的一些计算方法和知识点
CNN的一些计算方法知识点卷积层参数个数计算:卷积操作图片大小计算:知识点卷积层参数个数计算:params=m∗m∗channels∗kernels+biasparams = m*m*channels*kernels+biasparams=m∗m∗channels∗kernels+biasm:卷积核宽度channels:通道数kernels:卷积核个数bias:每个卷积核都有一个...原创 2020-03-18 20:59:18 · 1631 阅读 · 0 评论 -
PVNet: Pixel-wise Voting Network for 6 DoF Pose Estimation
PVNet论文笔记主要贡献介绍和现状主要贡献本文解决了在严重遮挡或截断情况下从单个RGB图像进行6DoF姿态估计的挑战。作者认为解决遮挡和截断需要密集的预测,即最终输出或中间表示的逐像素或逐块估计。 为此,提出了一种使用逐像素投票网络(PVNet)进行6D姿态估计的新颖框架,该框架学习了用于鲁棒2D关键点定位的矢量场表示,并自然地处理了遮挡和截断。我们提出基于PVNet的密集预测,利用不...原创 2019-12-17 21:52:03 · 1167 阅读 · 4 评论 -
论文笔记:A CNN Regression Approach for Real-Time 2D/3D Registration
REAL-TIME 2D/3D REGISTRATION VIA CNN REGRESSION摘要介绍问题描述方法摘要提出了用于实时2-D / 3-D注册的卷积神经网络(CNN)回归方法:(在这之前好像还没有将CNN应用在实时2-D / 3-D注册上) 该方法利用了嵌入在数字重建射线照相和X射线图像中的信息,并使用CNN回归器直接估算了转换参数CNN回归器针对局部区域进行训练,并...原创 2019-10-24 09:53:10 · 1806 阅读 · 0 评论 -
GoogLeNet论文笔记
GoogLeNet论文笔记原创 2020-03-18 21:03:23 · 169 阅读 · 0 评论