论文笔记:Multiview 2D/3D Rigid Registration

Multiview 2D/3D Rigid Registration

主要贡献

  • 提出一种新的基于学习的多视图2D / 3D刚性配准方法,该方法通过利用X射线和DRR之间的点对点对应关系直接测量3D对齐误差,从而避免了昂贵且不可靠的迭代姿势搜索,从而提供了更快,更可靠的配准。
  • 提出一种新颖的POI跟踪网络,该网络使用具有兴趣点(POI)卷积的Siamese U-Net构建,从而能够进行细化的特征提取和有效的POI相似性度量,更重要的是,它提供了对以下各项具有鲁棒性的平移不变二维失准度量:
  • POI跟踪器和三角测量层的统一框架,可实现(i)端到端的2D特征学习和(ii)3D姿态估计
  • 对大规模且具有挑战性的临床锥形束CT(CBCT)数据集进行了广泛的评估,结果表明,所提出的方法比基于最新学习方法的方法性能显着提高,并且在用作初始方法时姿态估计器,它也大大提高了基于最新优化的方法的鲁棒性和速度。

相关工作总结

  • Optimization-based approaches
    需要进行大量DRR渲染和相似性度量计算花费高,花费时间太多,且对初始参数比较敏感,鲁棒性不高。一些方法提出来加速DRR渲染,但配准总体时间难以满足达到实时的要求。另外一些方法来提高鲁棒性,但是这些方法通常要花费更长的时间。
  • Learning-based approaches
    训练网络直接预测3D姿势,这种方法往往过于自信并且依赖于不透明物的存在。一种替代的方式将配准描述成一个马尔可夫决策过程。但是这种方法代理在大量数据集上训练来让配准向期望的方向进行,尽管通过多代理设计可以得以缓解[,但是,邻域搜索可能会达到一个无法预见的状态并且使配准失败。所以此方法通常在配准中用于寻找一个好的初始姿势。

方法

由于单视图2D / 3D配准是一个不适定的问题(由于平面外的偏移引入了模糊性),因此在干预期间通常会捕获来自多个视图的X射线。这篇文章根据“ A review of 3d/2d registration methods for imageguided interventions”解决一个多视角配准问题。

  1. 问题描述
  • 2D/3D Rigid Registration with DRRs.:
    在2D / 3D刚性配准中,患者和CT体V之间的不对准是通过转换矩阵T来解决的,该转换矩阵T将V从其初始位置移至患者的所在坐标系下的的同一位置。T如下公式,主要由旋转矩阵和平移向量构成,T可以通过六个参数计算得来,分别是沿着三个周偏移量和旋转量。
    在这里插入图片描述
  • X-Ray Imaging Model
    在这里插入图片描述
    在规范视角下, DRR成像模型如下公式:
    在这里插入图片描述
    在 isocenter 坐标系中的点X =(X,Y,Z)T被映射到检测器的齐次坐标通过下面公式计算:
    在这里插入图片描述
    这里 x′ = (x′,y′,z′) 是齐次坐标,转化成检测器坐标为:x = (x,y) = (x′/z′,y′/z′).,
    在非规范视角下,点X映射的齐次坐标公式和成像公式变为:
    在这里插入图片描述
    在这里插入图片描述
  1. The Proposed POINT2 Approach
    该方法大致流程:
    (a)给定一组不同视角的DRR和X-Ray图对,首先从CT体中选择一组三维兴趣点(POI),并使用方程(4)将它们投影到每个DRR,如图所示。
    (b)追踪这些POIs对应于X-ray图上的点
    (c)根据X-ray图上跟踪到的POIs,通过三角测量来估计其在患者身上的相应3D POIs
    (d)通过将CT 的POI与患者POI对齐,可以计算出CT与患者之间的姿势偏差T*
    在这里插入图片描述
  2. POINT.
    该方法的关键组成部分之一是用于跟踪感兴趣点的网络,寻找两幅图像之点与点的对应关系。网路结构如下:
    在这里插入图片描述
  • 输入为: DRR(ID), X-ray (Ix)和一组映射到DRR上的POIs{x1D,…,xmD}。
  • 网络再经过两个权值共享的U-net网络分别对ID和Ix进行特征提取,得到 FD 和 Fx。根据DRR上的POIs提取出 FD对应位置以及领域像素作为特征向量FD (xiD),称作特征核。
  • POIs conv layer: 将上面提取出的特征核与Fx的每个位置进行相似性计算,取相似性最大的位置作为匹配点,这种操作类似与卷积操作,因此把他设计成一个卷积层,输出是每个DRR图的POI与X-ray图每个位置的相似度分数的热图。
    W的值表示特征核对应位置上的重要性,此方式来代替相似性度量,是否有更好的方法来近似相似性度量?
    在这里插入图片描述
    其中U-net结构为: 分为两个阶段收缩和扩展,收缩层依次进行 3x3conv. + 3x3conv. + ReLu + maxpooling;扩展层依次进行 反卷积(上采样)+ concatenate + 3x3conv.+ReLu +3x3conv.+ReLu)
  1. POINT2
    通过跟踪不同视角X-ray图的POIs,使用Triangulation获得它们在患者身上的3D位置。但是,本文寻求一个统一的解决方案,使在同一框架下制定POINT网络和三角剖分,以便可以以端到端的方式共同训练这两项任务,这可能有益于跟踪网络的学习。如下图所示,注意,两个网络权值并不共享,因为他们分别设计用来追踪不同视点的POIs
    当获得heatmaps后,本文运用三角剖分层,通过跟踪多视角X-ray的POI,形成三角形来定位三维点。
    在这里插入图片描述
    追踪X-ray的POI通过以下(重心)计算可得:
    在这里插入图片描述
    个人疑问:heatmaps的每个值表示相似性分数,对于某一个兴趣点来说,其heatmap上对应点以及周围的区域的值应该较大,但是在X-ray上很有可能有多个相似度比较高的点,这样heatmap上存在多个分数较高的区域使重心发生偏移,找到的对应点并不在这些高相似性分数区域,反而可能在相似性分数低的地方,这可能与事实不太符合,可能不能正确的找到对对应点的位置。
    然后文中将公式(4)改写为:
    在这里插入图片描述
    在这里插入图片描述
    这样改写的目的是: 我们需要通过被追踪的X-ray的POIs定位patient对应兴趣点的空间坐标,也就是求(8)中的X,通过这样的转换,可以根据以(7)得到的x直接构建一个线性方程,方便接下来的求解,在多视角下可得线性方程组:
    在这里插入图片描述
    就可以通过(11)直接解的X在这里插入图片描述
    训练时,把triangulation 加入到loss中正则化POINT网络:
    在这里插入图片描述
    5**. 形状对齐**
    通过以上方式计算得到了patient身上的坐标值PX,然后用现有方法寻找一个转换矩阵T*将 PD和PX,通过Procrustes分析可以解决此问题。
    在这里插入图片描述

实验

到这里全文整个方法讲解完毕,实验中证明了方法中W是否有作用,特征核大小的选取,以及兴趣点的选择方式,最后通过mTRE,GFR(总错误率)以及配准时间跟现有算法做比较,总体有一个很好的结果。

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 对比多视角编码(Contrastive Multiview Coding)是一种用于自监督学习的方法,它通过对同一样本的不同视角进行编码,来学习样本的特征表示。该方法可以在无需标注数据的情况下,从大量未标注的数据中学习到有用的特征表示,从而提高模型的泛化能力和性能。 ### 回答2: 对比多视图编码(Contrastive Multiview Coding, CMC)是一种新兴的自监督学习方法,是一种利用多个视角来学习数据特征的方法。相比于从传统的数据集中学习高级特征来说,CMC的作用在于通过理解不同数据视图之间的关系来代替手工标注或人为制造标签。 CMC方法将多个视角数据(例如从不同角度或时间拍摄的图像)随机组合进行研究,以便能够更好地训练出模型。这种方法的优点在于,它能够学习具有普适性的判别性特征,同时保留训练数据的复杂性。这意味着CMC方法在不依赖于大量标签数据的情况下,仍能够有效提供有用的表示特征。 CMC从理论上只需要一个loss function来完成整个模型的训练,这一点使它成为自监督学习中的热门方法之一。 它在应用中的一个重要应用是在计算机视觉领域,如图像分类、物体检测和语义分割等方面。它已经在许多计算机视觉任务中表现优异。 总之,对比多视图编码是一种适用于多视图学习的先进方法,因为它在利用不同视图之间的相似性来训练模型时非常有效,因此被广泛应用于计算机视觉领域。 ### 回答3: 对比多视图编码(Contrastive Multiview Coding,CMC)是一种新的自监督表示学习方法。它利用多视图(多角度、多尺度、多剪裁的)数据来学习特征表达,从而生成可区分、可重用的低维嵌入。该方法通常用于解决少标注数据问题,因为不像监督学习方法,它不需要标注在先。 CMC的核心思想是,使用互相独立的视角(通常指从不同的角度、尺度、或者剪裁方式上观察同一物体)来捕捉不同的特征信息,并学习如何将这些视角下的不同的低维特征嵌入到同一空间中。通过学习如何将这些特征的嵌入对样本之间的差异进行建模,在同一视角之外的样本之间也能够建立起有意义的对比关系。 具体的训练过程中,CMC通过分别对每个视角进行编码操作,为每个视角得到一个低维的特征表示,然后以最大化互相对比度的方式优化这些特征表达,让同一样本在不同视角下产生的嵌入向量更加接近,不同样本之间的嵌入向量相对较远,以此达到更好的分类效果。 总体而言,CMC具有可拓展性、半监督、不受领域限制等多样的特点,可以为许多计算机视觉任务提供有用的特征表示。此外,由于CMC利用无监督的自我学习机制,因此可以在无监督的情况下使用大规模数据,可以应用于数据集较少的任务中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值