hdu2693(区间dp)

题目链接:传送门

题目大意:详见题目

题目思路:先分析题意,他说至少连续两个的等差序列,其实质是2个或3个,因为3个以上的可以化简为若干个2个或3个。

其次分析,a[i],a[i+1].....a[j],如果最后一步删除了a[i]和a[j],那么中间的序列a[i+1]..a[j-1]一定已经全部删除,我们发现其中的规律为删除的为一个连续的区间。

最后分析dp方程的几种情况:

第一种情况:a[i],a[i+1].....a[j]最后一步删除a[i]和a[j]。

那么dp[j][i+j]=max(dp[j][i+j],dp[j+1][i+j-1]+2);

第二种情况:a[i],a[i+1].....a[j]最后一步不能同时删除a[i]和a[j]

那么我们需要在中间寻找断点,把这个区间看成两个小的区间的相加  

dp[j][i+j]=max(dp[j][i+j],dp[j][k]+dp[k+1][i+j]);

第三种情况:以上两种情况都是最后一步删除两个数,这种情况考虑最后一步删除三个数,即除了首位之外中间还要删除一个数。

那么在中间枚举寻找这个数即可,注意这三个数之间的两个区间需要满足都能全部删除的条件。

ps:如何判断他们公差在公差集合D内,因为公差集合中的元素总共只有300个,所以可以放入map中判断。

#include<bits/stdc++.h>
using namespace std;
const int maxn=600;
int a[maxn],d;
int dp[maxn][maxn];
map<int,int>mp;
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        mp.clear();
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&d);
            mp[d]=1;
        }
        memset(dp,0,sizeof dp);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j+i<=n;j++)
            {
                if(mp[a[j+i]-a[j]]&&(dp[j+1][i+j-1]==i-1))
                {
                    dp[j][i+j]=max(dp[j][i+j],dp[j+1][i+j-1]+2);
                }
                else
                {
                    for(int k=j;k<=i+j;k++)
                    dp[j][i+j]=max(dp[j][i+j],dp[j][k]+dp[k+1][i+j]);
                }
                for(int k=j+1;k<i+j;k++)
                {
                    if((a[j+i]-a[k])==(a[k]-a[j])&&mp[a[j+i]-a[k]] )
                    {
                        if(dp[j+1][k-1]==(k-j-1)&&dp[k+1][i+j-1]==(i+j-k-1))
                         dp[j][i+j]=max(dp[j][i+j],dp[j+1][k-1]+dp[k+1][i+j-1]+3);
                    }
                }
            }
        }
        printf("%d\n",dp[1][n]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值