题目链接:传送门
题目大意:详见题目
题目思路:先分析题意,他说至少连续两个的等差序列,其实质是2个或3个,因为3个以上的可以化简为若干个2个或3个。
其次分析,a[i],a[i+1].....a[j],如果最后一步删除了a[i]和a[j],那么中间的序列a[i+1]..a[j-1]一定已经全部删除,我们发现其中的规律为删除的为一个连续的区间。
最后分析dp方程的几种情况:
第一种情况:a[i],a[i+1].....a[j]最后一步删除a[i]和a[j]。
那么dp[j][i+j]=max(dp[j][i+j],dp[j+1][i+j-1]+2);
第二种情况:a[i],a[i+1].....a[j]最后一步不能同时删除a[i]和a[j]
那么我们需要在中间寻找断点,把这个区间看成两个小的区间的相加
dp[j][i+j]=max(dp[j][i+j],dp[j][k]+dp[k+1][i+j]);
第三种情况:以上两种情况都是最后一步删除两个数,这种情况考虑最后一步删除三个数,即除了首位之外中间还要删除一个数。
那么在中间枚举寻找这个数即可,注意这三个数之间的两个区间需要满足都能全部删除的条件。
ps:如何判断他们公差在公差集合D内,因为公差集合中的元素总共只有300个,所以可以放入map中判断。
#include<bits/stdc++.h>
using namespace std;
const int maxn=600;
int a[maxn],d;
int dp[maxn][maxn];
map<int,int>mp;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
mp.clear();
for(int i=1;i<=m;i++)
{
scanf("%d",&d);
mp[d]=1;
}
memset(dp,0,sizeof dp);
for(int i=1;i<=n;i++)
{
for(int j=1;j+i<=n;j++)
{
if(mp[a[j+i]-a[j]]&&(dp[j+1][i+j-1]==i-1))
{
dp[j][i+j]=max(dp[j][i+j],dp[j+1][i+j-1]+2);
}
else
{
for(int k=j;k<=i+j;k++)
dp[j][i+j]=max(dp[j][i+j],dp[j][k]+dp[k+1][i+j]);
}
for(int k=j+1;k<i+j;k++)
{
if((a[j+i]-a[k])==(a[k]-a[j])&&mp[a[j+i]-a[k]] )
{
if(dp[j+1][k-1]==(k-j-1)&&dp[k+1][i+j-1]==(i+j-k-1))
dp[j][i+j]=max(dp[j][i+j],dp[j+1][k-1]+dp[k+1][i+j-1]+3);
}
}
}
}
printf("%d\n",dp[1][n]);
}
return 0;
}