卷积神经网络(二)
技交部 潘震宇
一、 卷积步长
从之前的了解中,我们初步知道了卷积运算的含义。也知道了滤波器的作用。
在此前,我们在将滤波器盖在矩阵上,进行边移动边计算的时候,移动步长都是默认的一步,那或许有些人就会问了,能不能一次走俩步、三步、甚至更多步呢?答案当然是可以的。
在这个矩阵中,我们可以发现,将步长stride设置为2后,每一次移动都是俩步。不论是左右还是上下。
并且,在移动的过程中我们得注意,当覆盖区域有一部分在矩阵外时,这个移动就是非法的。我们就应该跳过。
假设矩阵为n * n,滤波器为f * f,padding为p,stride 为s:
则,卷积运算后的维度为floor((n + 2p - f)/s + 1) * floor((n + 2p - f)/ s + 1)
事实上,在机器学习中,卷积运算的说法仅限于上述运算,但是真正在数学领域中,中间还应该有一步与翻转滤波器相乘。
具体详细,感兴趣的可以自行查询相关资料,这里就不加以介绍。
二、 卷积中,卷的体现
在之前的讲解中,咱们都是利用的二维图像的灰度图矩阵进行举例。那么,若为RGB三色图所对应的三维矩阵呢?它的卷积又与二维卷积运算有哪些区别呢?
上图所示,假设咱们有一副6*6*3的图像,3代表着RGB三种通道。它对应的过滤器假设为3*3*3,最终卷积后得出一个二维的4*4矩阵。
过滤器:3 * 3 * 3
这里的绿色的3,代表着对应图像的三种通道,它的值应该和图像的通道值一致。就好像是三层二维的过滤器,分别对应着每一个色通道。再把他们压在一起。因此,黄色的3*3,也就是之前二维的概念。
我们把它用一种更好看的形式来表现。
如上图所示的运算当中,第一次计算便时将三维滤波器放在RGB图像的外部定点处。并且对应数字相乘,27个乘积再相加,就得