八、量子纠缠状态的纯化协议及其应用

八、量子纠缠状态的纯化协议及其应用


1.EPP原理


       这里我们先来回顾一下贝尔状态:
∣ β 00 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 |\beta_{00}\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} β00=2 00+11

∣ β 01 ⟩ = ∣ 01 ⟩ + ∣ 10 ⟩ 2 |\beta_{01}\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} β01=2 01+10

∣ β 10 ⟩ = ∣ 00 ⟩ − ∣ 11 ⟩ 2 |\beta_{10}\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}} β10=2 0011

∣ β 11 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 |\beta_{11}\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} β11=2 0110

这 4 个状态组成两位 qubit 列向量空间的正规直交基底。
在这里插入图片描述

贝尔

       在利用量子高密度编码或量子瞬间传递之前,在通信双方必须共同拥有纠缠状态对中的某个 qubit ,通常我们选择某个贝尔态作为共同拥有的 qubit 对。但是,实际上在共同拥有贝尔状态的过程中,由于 qubit 在量子信道中受噪声的干扰,或者由于 qubit 的保存时间的持续造成其状态的改变,所以在实际利用贝尔状态进行通信时要考虑这些 qubit 状态的抗干扰对策。其中的一个对策是利用量子纠错码体系,达到订正 qubit 在量子信道传送过程中其状态发生变化而产生的错误。而另外一个对策就是这里要讲述的 “纠缠状态纯化协议(EPP)” ,该协议的目的就是:用尽可能接近 1 的概率使通信双方共同拥有贝尔状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00

       我们首先来考虑通过备制中心将一对贝尔态 ∣ β 00 ⟩ |\beta_{00}\rangle β00 分别传送给用户 A 和 B ,假设以概率 p 在信道传输中发生了 bit 反转错误,以概率 1-p 不发生错误。那么在传送 ∣ β 00 ⟩ |\beta_{00}\rangle β00 中用户 A 和 B 共同拥有的状态就变成:

出现的概率状态
( 1 − p ) 2 (1-p)^2 (1p)2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ β 00 ⟩ \frac{\vert00\rangle+\vert11\rangle}{\sqrt{2}}=\vert\beta_{00}\rangle 2 00+11=β00
p ( 1 − p ) p(1-p) p(1p) ( X ∣ 0 ⟩ ) ∣ 0 ⟩ + ( X ∣ 1 ⟩ ) ∣ 1 ⟩ 2 = ∣ 10 ⟩ + ∣ 01 ⟩ 2 = ∣ β 01 ⟩ \frac{(X\vert0\rangle)\vert0\rangle+(X\vert1\rangle)\vert1\rangle}{\sqrt{2}}=\frac{\vert10\rangle+\vert01\rangle}{\sqrt{2}}=\vert\beta_{01}\rangle 2 (X0)0+(X1)1=2 10+01=β01
( 1 − p ) p (1-p)p (1p)p ∣ 0 ⟩ ( X ∣ 0 ⟩ ) + ∣ 1 ⟩ ( X ∣ 1 ⟩ ) 2 = ∣ 01 ⟩ + ∣ 10 ⟩ 2 = ∣ β 01 ⟩ \frac{\vert0\rangle(X\vert0\rangle)+\vert1\rangle(X\vert1\rangle)}{\sqrt{2}}=\frac{\vert01\rangle+\vert10\rangle}{\sqrt{2}}=\vert\beta_{01}\rangle 2 0(X0)+1(X1)=2 01+10=β01
p 2 p^2 p2 ( X ∣ 0 ⟩ ) ( X ∣ 0 ⟩ ) + ( X ∣ 0 ⟩ ) ( X ∣ 1 ⟩ ) 2 = ∣ 11 ⟩ + ∣ 00 ⟩ 2 = ∣ β 00 ⟩ \frac{(X\vert0\rangle)(X\vert0\rangle)+(X\vert0\rangle)(X\vert1\rangle)}{\sqrt{2}}=\frac{\vert11\rangle+\vert00\rangle}{\sqrt{2}}=\vert\beta_{00}\rangle 2 (X0)(X0)+(X0)(X1)=2 11+00=β00

从上表可以看出,当只有一位发生 bit 反转错误时,双方拥有的不再是 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00 ,我们定义
q = 1 − ( 1 − p ) 2 − p 2 q=1-(1-p)^2-p^2 q=1(1p)2p2

那么我们可以得到,A 和 B :
以 概 率   1 − q   共 同 拥 有 状 态          ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ β 00 ⟩ ( 未 出 错 ) 以概率\ 1 - q\ 共同拥有状态\ \ \ \ \ \ \ \ \frac{\vert00\rangle+\vert11\rangle}{\sqrt{2}}=|\beta_{00}\rangle(未出错)  1q         2 00+11=β00

以 概 率   q   共 同 拥 有 状 态             ∣ 01 ⟩ + ∣ 10 ⟩ 2 = ∣ β 01 ⟩ ( 出 错 ) 以概率\ q\ 共同拥有状态\ \ \ \ \ \ \ \ \ \ \ \frac{\vert01\rangle+\vert10\rangle}{\sqrt{2}}=|\beta_{01}\rangle(出错)  q            2 01+10=β01

       为了使双方得到 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00 qubit 对的概率更高,我们让备制中心备制两对贝尔状态 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00 ,然后将每对 qubit 分发给两个用户,此时 A 和 B 共同拥有 2 个 qubit 对,那么两个用户共同拥有贝尔状态 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00 的概率将会大于 1 − q \pmb{1-q} 1q1q1q ,我们称传输两对 qubit 的方法为 量子纠缠纯化协议 EPP

       通过上面的讨论我们知道,传输一对 qubit 时会以一定概率变为其他的贝尔状态。对于传输两对 qubit 对时,考虑只发生 bit 反转错误,每对发生错误的概率和只传输一对时相同,由此我们得到 A 和 B 收到的两对 qubit 的可能状态如下:

出现的概率得到的状态
( 1 − q ) 2 (1-q)^2 (1q)2 ∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00
( 1 − q ) q (1-q)q (1q)q ∣ β 00 ⟩ ∣ β 01 ⟩ \vert\beta_{00}\rangle\vert\beta_{01}\rangle β00β01
q ( 1 − q ) q(1-q) q(1q) ∣ β 01 ⟩ ∣ β 00 ⟩ \vert\beta_{01}\rangle\vert\beta_{00}\rangle β01β00
q 2 q^2 q2 ∣ β 01 ⟩ ∣ β 01 ⟩ \vert\beta_{01}\rangle\vert\beta_{01}\rangle β01β01

       为了进一步提高获得 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00 贝尔状态的概率,我们使用如下的回路对收到的 qubit 进行操作:
在这里插入图片描述

使用上图的回路,将 A 和 B 收到的两个 qubit 通过控制非门,如果收到的 qubit 对没有发生错误,则总体的状态为:
∣ β 00 ⟩ ∣ β 00 ⟩ = ( ∣ 0 A 0 B ⟩ + ∣ 1 A 1 B ⟩ ) ( ∣ 0 A 0 B ⟩ + ∣ 1 A 1 B ⟩ ) 2 |\beta_{00}\rangle|\beta_{00}\rangle= \frac{(|0_A0_B\rangle+|1_A1_B\rangle)(|0_A0_B\rangle+|1_A1_B\rangle)}{2} β00β00=2(0A0B+1A1B)(0A0B+1A1B)

= ( ∣ 0 A 0 B 0 A 0 B ⟩ + ∣ 0 A 0 B 1 A 1 B ⟩ ) ( ∣ 1 A 1 B 0 A 0 B ⟩ + ∣ 1 A 1 B 1 A 1 B ⟩ ) 2 =\frac{(|0_A0_B0_A0_B\rangle+|0_A0_B1_A1_B\rangle)(|1_A1_B0_A0_B\rangle+|1_A1_B1_A1_B\rangle)}{2} =2(0A0B0A0B+0A0B1A1B)(1A1B0A0B+1A1B1A1B)

经过控制非门后的状态变为:
( ∣ 0 A 0 B 0 A 0 B ⟩ + ∣ 0 A 0 B 1 A 1 B ⟩ ) ( ∣ 1 A 1 B 1 A 1 B ⟩ + ∣ 1 A 1 B 0 A 0 B ⟩ ) 2 = ∣ β 00 ⟩ ∣ β 00 ⟩ \frac{(|0_A0_B0_A0_B\rangle+|0_A0_B1_A1_B\rangle)(|1_A1_B1_A1_B\rangle+|1_A1_B0_A0_B\rangle)}{2}=|\beta_{00}\rangle|\beta_{00}\rangle 2(0A0B0A0B+0A0B1A1B)(1A1B1A1B+1A1B0A0B)=β00β00

可以发现没有什么改变。用同样的方法将发生 bit 反转错误后可能存在的所有状态(上表的状态)通过控制非门,得到的结果如下:

收到时的状态通过控制非门后的状态
∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00 ∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00
∣ β 00 ⟩ ∣ β 01 ⟩ \vert\beta_{00}\rangle\vert\beta_{01}\rangle β00β01 ∣ β 00 ⟩ ∣ β 01 ⟩ \vert\beta_{00}\rangle\vert\beta_{01}\rangle β00β01
∣ β 01 ⟩ ∣ β 00 ⟩ \vert\beta_{01}\rangle\vert\beta_{00}\rangle β01β00 ∣ β 01 ⟩ ∣ β 01 ⟩ \vert\beta_{01}\rangle\vert\beta_{01}\rangle β01β01
∣ β 01 ⟩ ∣ β 01 ⟩ \vert\beta_{01}\rangle\vert\beta_{01}\rangle β01β01 ∣ β 01 ⟩ ∣ β 00 ⟩ \vert\beta_{01}\rangle\vert\beta_{00}\rangle β01β00

根据回路图,A 和 B 对各自收到的第二对 qubit 分别进行测量,并将测量的结果通过经典信道互相通知对方。如果两者测定的结果相同,则保留剩余的 qubit ;如果不一致,就舍弃该次传输的 qubit 对。对于上面通过控制非门的四种结果进行测量后的操作如下(有下划线的是测量的 qubit):

通过控制非门后的状态操作
∣ β 00 ⟩ ∣ β 00 ⟩ ‾ \vert\beta_{00}\rangle\underline{\vert\beta_{00}\rangle} β00β00保留
∣ β 00 ⟩ ∣ β 01 ⟩ ‾ \vert\beta_{00}\rangle\underline{\vert\beta_{01}\rangle} β00β01舍弃
∣ β 01 ⟩ ∣ β 01 ⟩ ‾ \vert\beta_{01}\rangle\underline{\vert\beta_{01}\rangle} β01β01舍弃
∣ β 01 ⟩ ∣ β 00 ⟩ ‾ \vert\beta_{01}\rangle\underline{\vert\beta_{00}\rangle} β01β00保留

通过上表可以发现,当第二对 qubit 为 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00 时才会保留收到的 qubit 对,而在保留 qubit 的情况下,对应的未通过控制非门之前的状态为 ∣ β 00 ⟩ ∣ β 00 ⟩ |\beta_{00}\rangle|\beta_{00}\rangle β00β00 ∣ β 01 ⟩ ∣ β 01 ⟩ |\beta_{01}\rangle|\beta_{01}\rangle β01β01 ,且这两种状态在信道传输后出现的概率为 ( 1 − q ) 2 + q 2 (1-q)^2+q^2 (1q)2+q2 。因此通过控制非门并测量后,保留的 qubit 对的状态及出现的概率为:

保留的 qubit 对的状态出现的概率
∣ β 00 ⟩ \vert\beta_{00}\rangle β00 ( 1 − q ) 2 ( 1 − q ) 2 + q 2 \frac{(1-q)^2}{(1-q)^2+q^2} (1q)2+q2(1q)2
∣ β 01 ⟩ \vert\beta_{01}\rangle β01 q 2 ( 1 − q ) 2 + q 2 \frac{q^2}{(1-q)^2+q^2} (1q)2+q2q2

假设 q q q 满足不等式 0 < q < 1 2 0<q<\frac{1}{2} 0<q<21,则下列不等式成立:
( 1 − q ) 2 ( 1 − q ) 2 + q 2 > 1 − q \frac{(1-q)^2}{(1-q)^2+q^2}>1-q (1q)2+q2(1q)2>1q

由此得出结论:通过以上的回路对收到的 qubit 对进行处理后,拥有状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00 的概率是增大的


2.Quantum Privacy Amplification 协议


       前面所提到的 EPP 方法只适用于仅发生 bit 反转错误的信道,但是通常信道中还会发生位相翻转的错误,因此提出了针对一般量子信道能够利用的 EPP 方法,即 QPA 协议。QPA 协议是在量子密钥分配的基础上,利用共有纠缠状态的物理事实,为了减少量子信道本身的错误或避免第三者的恶意篡改对量子信息的影响而提出的协议。

       现在我们仍然假设备制中心备制并传输两对贝尔状态,QPA 协议里,我们让接收到的两对 qubit 经过如下的回路:
在这里插入图片描述

其中 U A U_A UA 为如下的 qubit 演算:
U A = 1 2 [ 1 − i − i 1 ] U_A=\frac{1}{\sqrt{2}}\left[\begin{matrix} 1 & -i \\ -i & 1 \end{matrix} \right] UA=2 1[1ii1]

则:
U A ∣ 0 ⟩ = 1 2 [ 1 − i − i 1 ] [ 1 0 ] = 1 2 [ 1 − i ] = 1 2 ( [ 1 0 ] + ( − i ) [ 0 1 ] ) = 1 2 ( ∣ 0 ⟩ − i ∣ 1 ⟩ ) U_A|0\rangle=\frac{1}{\sqrt{2}}\left[\begin{matrix} 1 & -i \\ -i & 1 \end{matrix} \right] \left[\begin{matrix} 1 \\ 0 \end{matrix} \right]= \frac{1}{\sqrt{2}}\left[\begin{matrix} 1 \\ -i \end{matrix} \right]= \frac{1}{\sqrt{2}}\left(\left[\begin{matrix} 1 \\ 0 \end{matrix} \right]+ (-i)\left[\begin{matrix} 0 \\ 1\end{matrix} \right]\right)= \frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle) UA0=2 1[1ii1][10]=2 1[1i]=2 1([10]+(i)[01])=2 1(0i1)

U A ∣ 1 ⟩ = 1 2 [ 1 − i − i 1 ] [ 0 1 ] = 1 2 [ − i 1 ] = 1 2 ( ( − i ) [ 1 0 ] + [ 0 1 ] ) = 1 2 ( ( − i ) ∣ 0 ⟩ + ∣ 1 ⟩ ) U_A|1\rangle=\frac{1}{\sqrt{2}}\left[\begin{matrix} 1 & -i \\ -i & 1 \end{matrix} \right] \left[\begin{matrix} 0 \\ 1 \end{matrix} \right]= \frac{1}{\sqrt{2}}\left[\begin{matrix} -i \\ 1 \end{matrix} \right]= \frac{1}{\sqrt{2}}\left((-i)\left[\begin{matrix} 1 \\ 0 \end{matrix} \right]+ \left[\begin{matrix} 0 \\ 1\end{matrix} \right]\right)= \frac{1}{\sqrt{2}}((-i)|0\rangle+|1\rangle) UA1=2 1[1ii1][01]=2 1[i1]=2 1((i)[10]+[01])=2 1((i)0+1)


U B U_B UB 为如下的 qubit 演算:
U B = 1 2 [ 1 i i 1 ] U_B=\frac{1}{\sqrt{2}}\left[\begin{matrix} 1 & i \\ i & 1 \end{matrix} \right] UB=2 1[1ii1]

则:
U B ∣ 0 ⟩ = 1 2 [ 1 i i 1 ] [ 1 0 ] = 1 2 [ 1 i ] = 1 2 ( [ 1 0 ] + i [ 0 1 ] ) = 1 2 ( ∣ 0 ⟩ + i ∣ 1 ⟩ ) U_B|0\rangle=\frac{1}{\sqrt{2}}\left[\begin{matrix} 1 & i \\ i & 1 \end{matrix} \right]\left[\begin{matrix} 1 \\ 0 \end{matrix} \right]= \frac{1}{\sqrt{2}}\left[\begin{matrix} 1 \\ i \end{matrix} \right]= \frac{1}{\sqrt{2}}\left(\left[\begin{matrix} 1 \\ 0 \end{matrix} \right]+ i\left[\begin{matrix} 0 \\ 1\end{matrix} \right]\right)= \frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) UB0=2 1[1ii1][10]=2 1[1i]=2 1([10]+i[01])=2 1(0+i1)

U B ∣ 1 ⟩ = 1 2 [ 1 i i 1 ] [ 0 1 ] = 1 2 [ i 1 ] = 1 2 ( i [ 1 0 ] + [ 0 1 ] ) = 1 2 ( i ∣ 0 ⟩ + ∣ 1 ⟩ ) U_B|1\rangle=\frac{1}{\sqrt{2}}\left[\begin{matrix} 1 & i \\ i & 1 \end{matrix} \right] \left[\begin{matrix} 0 \\ 1 \end{matrix} \right]= \frac{1}{\sqrt{2}}\left[\begin{matrix} i \\ 1 \end{matrix} \right]= \frac{1}{\sqrt{2}}\left(i\left[\begin{matrix} 1 \\ 0 \end{matrix} \right]+ \left[\begin{matrix} 0 \\ 1\end{matrix} \right]\right)= \frac{1}{\sqrt{2}}(i|0\rangle+|1\rangle) UB1=2 1[1ii1][01]=2 1[i1]=2 1(i[10]+[01])=2 1(i0+1)


       根据以上的回路,用户 A 和 B 各自将自己拥有的 2 个 qubit 通过控制非门并以 { ∣ 0 ⟩ , ∣ 1 ⟩ } \{|0\rangle,|1\rangle\} {01} 基底测定各自拥有的 qubit ,并将测定的结果通过经典信道相互通知对方。如果两者测定的结果一致,则剩余的一对 qubit 以更高的概率被认定为是状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00 并加以保存,如果测定的结果不一致,则舍弃剩余的一对 qubit 。


       下面我们假设在量子信道中发生位相翻转错误来看一下 QPA 协议的效果。

       假设在只传送一对 qubit 贝尔态时正确发送的概率为 1 − p 1-p 1p ,则发生错误的概率为 p p p ,再设 q = 1 − ( 1 − p ) 2 − p 2 q=1-(1-p)^2-p^2 q=1(1p)2p2 ,那么传送两对 qubit 贝尔态时 A 和 B 共同拥有的贝尔状态如下:

出现的概率得到的状态
( 1 − q ) 2 (1-q)^2 (1q)2 ∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00
( 1 − q ) q (1-q)q (1q)q ∣ β 00 ⟩ ∣ β 10 ⟩ \vert\beta_{00}\rangle\vert\beta_{10}\rangle β00β10
q ( 1 − q ) q(1-q) q(1q) ∣ β 10 ⟩ ∣ β 00 ⟩ \vert\beta_{10}\rangle\vert\beta_{00}\rangle β10β00
q 2 q^2 q2 ∣ β 10 ⟩ ∣ β 10 ⟩ \vert\beta_{10}\rangle\vert\beta_{10}\rangle β10β10

下面我们讨论对于一对 qubit ,当 A 和 B 接收到不同的贝尔状态后,再经过 U A U_A UA U B U_B UB 运算后得到的状态:

∣ β 00 ⟩ ⟶ U A , U B ( U A ∣ 0 ⟩ ) ( U B ∣ 0 ⟩ ) + ( U A ∣ 1 ⟩ ) ( U B ∣ 1 ⟩ ) 2 |\beta_{00}\rangle \stackrel{U_A,U_B}{\longrightarrow} \frac{(U_A|0\rangle)(U_B|0\rangle)+(U_A|1\rangle)(U_B|1\rangle)}{\sqrt{2}} β00UA,UB2 (UA0)(UB0)+(UA1)(UB1)

= ( ∣ 0 ⟩ − i ∣ 1 ⟩ ) ( ∣ 0 ⟩ + i ∣ 1 ⟩ ) + ( − i ∣ 0 ⟩ + ∣ 1 ⟩ ) ( i ∣ 0 ⟩ + ∣ 1 ⟩ ) 2 2 = ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ β 00 ⟩ =\frac{(|0\rangle-i|1\rangle)(|0\rangle+i|1\rangle)+ (-i|0\rangle+|1\rangle)(i|0\rangle+|1\rangle)}{2\sqrt{2}}= \frac{|00\rangle+|11\rangle}{\sqrt{2}}=|\beta_{00}\rangle =22 (0i1)(0+i1)+(i0+1)(i0+1)=2 00+11=β00


∣ β 01 ⟩ ⟶ U A , U B ( U A ∣ 0 ⟩ ) ( U B ∣ 1 ⟩ ) + ( U A ∣ 1 ⟩ ) ( U B ∣ 0 ⟩ ) 2 |\beta_{01}\rangle \stackrel{U_A,U_B}{\longrightarrow} \frac{(U_A|0\rangle)(U_B|1\rangle)+(U_A|1\rangle)(U_B|0\rangle)}{\sqrt{2}} β01UA,UB2 (UA0)(UB1)+(UA1)(UB0)

= ( ∣ 0 ⟩ − i ∣ 1 ⟩ ) ( i ∣ 0 ⟩ + ∣ 1 ⟩ ) + ( − i ∣ 0 ⟩ + ∣ 1 ⟩ ) ( ∣ 0 ⟩ + i ∣ 1 ⟩ ) 2 2 = ∣ 01 ⟩ + ∣ 10 ⟩ 2 = ∣ β 01 ⟩ =\frac{(|0\rangle-i|1\rangle)(i|0\rangle+|1\rangle)+(-i|0\rangle+ |1\rangle)(|0\rangle+i|1\rangle)}{2\sqrt{2}}= \frac{|01\rangle+|10\rangle}{\sqrt{2}}=|\beta_{01}\rangle =22 (0i1)(i0+1)+(i0+1)(0+i1)=2 01+10=β01


∣ β 10 ⟩ ⟶ U A , U B ( U A ∣ 0 ⟩ ) ( U B ∣ 0 ⟩ ) − ( U A ∣ 1 ⟩ ) ( U B ∣ 1 ⟩ ) 2 |\beta_{10}\rangle \stackrel{U_A,U_B}{\longrightarrow }\frac{(U_A|0\rangle)(U_B|0\rangle)- (U_A|1\rangle)(U_B|1\rangle)}{\sqrt{2}} β10UA,UB2 (UA0)(UB0)(UA1)(UB1)

= ( ∣ 0 ⟩ − i ∣ 1 ⟩ ) ( ∣ 0 ⟩ + i ∣ 1 ⟩ ) − ( − i ∣ 0 ⟩ + ∣ 1 ⟩ ) ( i ∣ 0 ⟩ + ∣ 1 ⟩ ) 2 2 = ∣ 01 ⟩ − ∣ 10 ⟩ 2 i = ∣ β 11 ⟩ =\frac{(|0\rangle-i|1\rangle)(|0\rangle+i|1\rangle)- (-i|0\rangle+|1\rangle)(i|0\rangle+|1\rangle)}{2\sqrt{2}}= \frac{|01\rangle-|10\rangle}{\sqrt{2}}i=|\beta_{11}\rangle =22 (0i1)(0+i1)(i0+1)(i0+1)=2 0110i=β11


∣ β 11 ⟩ ⟶ U A , U B ( U A ∣ 0 ⟩ ) ( U B ∣ 1 ⟩ ) − ( U A ∣ 1 ⟩ ) ( U B ∣ 0 ⟩ ) 2 |\beta_{11}\rangle \stackrel{U_A,U_B}{\longrightarrow} \frac{(U_A|0\rangle)(U_B|1\rangle)- (U_A|1\rangle)(U_B|0\rangle)}{\sqrt{2}} β11UA,UB2 (UA0)(UB1)(UA1)(UB0)

= ( ∣ 0 ⟩ − i ∣ 1 ⟩ ) ( i ∣ 0 ⟩ + ∣ 1 ⟩ ) − ( − i ∣ 0 ⟩ + ∣ 1 ⟩ ) ( ∣ 0 ⟩ + i ∣ 1 ⟩ ) 2 2 = ∣ 00 ⟩ − ∣ 11 ⟩ 2 i = ∣ β 10 ⟩ =\frac{(|0\rangle-i|1\rangle)(i|0\rangle+|1\rangle)- (-i|0\rangle+|1\rangle)(|0\rangle+i|1\rangle)}{2\sqrt{2}}= \frac{|00\rangle-|11\rangle}{\sqrt{2}}i=|\beta_{10}\rangle =22 (0i1)(i0+1)(i0+1)(0+i1)=2 0011i=β10

总结如下:

共同拥有的状态做相应的 U 演算后的状态
∣ β 00 ⟩ \vert\beta_{00}\rangle β00 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00
∣ β 01 ⟩ \vert\beta_{01}\rangle β01 ∣ β 01 ⟩ \vert\beta_{01}\rangle β01
∣ β 10 ⟩ \vert\beta_{10}\rangle β10 ∣ β 11 ⟩ \vert\beta_{11}\rangle β11
∣ β 11 ⟩ \vert\beta_{11}\rangle β11 ∣ β 10 ⟩ \vert\beta_{10}\rangle β10

在这里插入图片描述
再来讨论对于两对 qubit 贝尔态,通过 U A U_A UA U B U_B UB 演算后,再通过控制非门得到的结果:

  1. 用户 A 和 B 收到的整体状态为 ∣ β 00 ⟩ ∣ β 00 ⟩ |\beta_{00}\rangle|\beta_{00}\rangle β00β00 时:
    先对各自拥有的 qubit 分别实施 U A U_A UA U B U_B UB 演算:
    ∣ β 00 ⟩ ∣ β 00 ⟩ ⟶ U A , U B ∣ β 00 ⟩ ∣ β 00 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 |\beta_{00}\rangle|\beta_{00}\rangle \stackrel{U_A,U_B}{\longrightarrow} |\beta_{00}\rangle|\beta_{00}\rangle= \frac{|00\rangle+|11\rangle}{\sqrt{2}}\frac{|00\rangle+|11\rangle}{\sqrt{2}} β00β00UA,UBβ00β00=2 00+112 00+11

    再将该状态通过控制非门:
    ∣ 00 ⟩ + ∣ 11 ⟩ 2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ 0000 ⟩ + ∣ 0011 ⟩ + ∣ 1100 ⟩ + ∣ 1111 ⟩ 2 \frac{|00\rangle+|11\rangle}{\sqrt{2}}\frac{|00\rangle+|11\rangle}{\sqrt{2}}= \frac{|0000\rangle+|0011\rangle+|1100\rangle+|1111\rangle}{2} 2 00+112 00+11=20000+0011+1100+1111

    ⟶ 控 制 非 门 ∣ 0000 ⟩ + ∣ 0011 ⟩ + ∣ 1111 ⟩ + ∣ 1100 ⟩ 2 = ∣ 00 ⟩ + ∣ 11 ⟩ 2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ β 00 ⟩ ∣ β 00 ⟩ \stackrel{控制非门}{\longrightarrow} \frac{|0000\rangle+|0011\rangle+|1111\rangle+|1100\rangle}{2}= \frac{|00\rangle+|11\rangle}{\sqrt{2}}\frac{|00\rangle+|11\rangle}{\sqrt{2}}= |\beta_{00}\rangle|\beta_{00}\rangle 20000+0011+1111+1100=2 00+112 00+11=β00β00

    根据上面的步骤,A 和 B 对第二对 qubit 分别进行测量,其测量结果一致的概率为 1 。因此双方共同拥有贝尔状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00

  2. 用户 A 和 B 收到的整体状态为 ∣ β 00 ⟩ ∣ β 10 ⟩ |\beta_{00}\rangle|\beta_{10}\rangle β00β10 时:
    先对各自拥有的 qubit 分别实施 U A U_A UA U B U_B UB 演算:
    ∣ β 00 ⟩ ∣ β 10 ⟩ ⟶ U A , U B ∣ β 00 ⟩ β 11 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 ∣ 01 ⟩ − ∣ 10 ⟩ 2 |\beta_{00}\rangle|\beta_{10}\rangle \stackrel{U_A,U_B}{\longrightarrow} |\beta_{00}\rangle\beta_{11}\rangle= \frac{|00\rangle+|11\rangle}{\sqrt{2}}\frac{|01\rangle-|10\rangle}{\sqrt{2}} β00β10UA,UBβ00β11=2 00+112 0110

    再将该状态通过控制非门:
    ∣ 00 ⟩ + ∣ 11 ⟩ 2 ∣ 01 ⟩ − ∣ 10 ⟩ 2 = ∣ 0001 ⟩ − ∣ 0010 ⟩ + ∣ 1101 ⟩ − ∣ 1110 ⟩ 2 \frac{|00\rangle+|11\rangle}{\sqrt{2}}\frac{|01\rangle-|10\rangle}{\sqrt{2}}= \frac{|0001\rangle-|0010\rangle+|1101\rangle-|1110\rangle}{2} 2 00+112 0110=200010010+11011110

    ⟶ 控 制 非 门 ∣ 0001 ⟩ − ∣ 0010 ⟩ + ∣ 1110 ⟩ − ∣ 1101 ⟩ 2 = ∣ 00 ⟩ − ∣ 11 ⟩ 2 ∣ 01 ⟩ − ∣ 10 ⟩ 2 = ∣ β 10 ⟩ ∣ β 11 ⟩ \stackrel{控制非门}{\longrightarrow} \frac{|0001\rangle-|0010\rangle+|1110\rangle-|1101\rangle}{2}= \frac{|00\rangle-|11\rangle}{\sqrt{2}}\frac{|01\rangle-|10\rangle}{\sqrt{2}}= |\beta_{10}\rangle|\beta_{11}\rangle 200010010+11101101=2 00112 0110=β10β11

    A 和 B 对第二对 qubit 即 ∣ β 11 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 |\beta_{11}\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} β11=2 0110 进行测量时,其测量结果不同的概率为 1 ,所以剩下的一对 qubit 被舍弃。

  3. 用户 A 和 B 收到的整体状态为 ∣ β 10 ⟩ ∣ β 00 ⟩ |\beta_{10}\rangle|\beta_{00}\rangle β10β00 时:
    先对各自拥有的 qubit 分别实施 U A U_A UA U B U_B UB 演算:
    ∣ β 10 ⟩ ∣ β 00 ⟩ ⟶ U A , U B ∣ β 11 ⟩ β 00 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 |\beta_{10}\rangle|\beta_{00}\rangle \stackrel{U_A,U_B}{\longrightarrow} |\beta_{11}\rangle\beta_{00}\rangle= \frac{|01\rangle-|10\rangle}{\sqrt{2}}\frac{|00\rangle+|11\rangle}{\sqrt{2}} β10β00UA,UBβ11β00=2 01102 00+11

    再将该状态通过控制非门:
    ∣ 01 ⟩ − ∣ 10 ⟩ 2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ 0100 ⟩ + ∣ 0111 ⟩ − ∣ 1000 ⟩ − ∣ 1011 ⟩ 2 \frac{|01\rangle-|10\rangle}{\sqrt{2}}\frac{|00\rangle+|11\rangle}{\sqrt{2}}= \frac{|0100\rangle+|0111\rangle-|1000\rangle-|1011\rangle}{2} 2 01102 00+11=20100+011110001011

    ⟶ 控 制 非 门 ∣ 0101 ⟩ + ∣ 0110 ⟩ − ∣ 1010 ⟩ − ∣ 1001 ⟩ 2 = ∣ 01 ⟩ − ∣ 10 ⟩ 2 ∣ 01 ⟩ + ∣ 10 ⟩ 2 = ∣ β 11 ⟩ ∣ β 01 ⟩ \stackrel{控制非门}{\longrightarrow} \frac{|0101\rangle+|0110\rangle-|1010\rangle-|1001\rangle}{2}= \frac{|01\rangle-|10\rangle}{\sqrt{2}}\frac{|01\rangle+|10\rangle}{\sqrt{2}}= |\beta_{11}\rangle|\beta_{01}\rangle 20101+011010101001=2 01102 01+10=β11β01

    A 和 B 对第二对 qubit 即 ∣ β 01 ⟩ = ∣ 01 ⟩ + ∣ 10 ⟩ 2 |\beta_{01}\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} β01=2 01+10 进行测量时,其测量结果不同的概率为 1 ,所以剩下的一对 qubit 被舍弃。

  4. 用户 A 和 B 收到的整体状态为 ∣ β 10 ⟩ ∣ β 10 ⟩ |\beta_{10}\rangle|\beta_{10}\rangle β10β10 时:
    先对各自拥有的 qubit 分别实施 U A U_A UA U B U_B UB 演算:
    ∣ β 10 ⟩ ∣ β 10 ⟩ ⟶ U A , U B ∣ β 11 ⟩ β 11 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 ∣ 01 ⟩ − ∣ 10 ⟩ 2 |\beta_{10}\rangle|\beta_{10}\rangle \stackrel{U_A,U_B}{\longrightarrow} |\beta_{11}\rangle\beta_{11}\rangle= \frac{|01\rangle-|10\rangle}{\sqrt{2}}\frac{|01\rangle-|10\rangle}{\sqrt{2}} β10β10UA,UBβ11β11=2 01102 0110

    再将该状态通过控制非门:
    ∣ 01 ⟩ − ∣ 10 ⟩ 2 ∣ 01 ⟩ − ∣ 10 ⟩ 2 = ∣ 0101 ⟩ − ∣ 0110 ⟩ − ∣ 1001 ⟩ + ∣ 1010 ⟩ 2 \frac{|01\rangle-|10\rangle}{\sqrt{2}}\frac{|01\rangle-|10\rangle}{\sqrt{2}}= \frac{|0101\rangle-|0110\rangle-|1001\rangle+|1010\rangle}{2} 2 01102 0110=2010101101001+1010

    ⟶ 控 制 非 门 ∣ 0100 ⟩ + ∣ 0111 ⟩ − ∣ 1011 ⟩ − ∣ 1000 ⟩ 2 = ∣ 01 ⟩ − ∣ 10 ⟩ 2 ∣ 00 ⟩ + ∣ 11 ⟩ 2 = ∣ β 11 ⟩ ∣ β 00 ⟩ \stackrel{控制非门}{\longrightarrow} \frac{|0100\rangle+|0111\rangle-|1011\rangle-|1000\rangle}{2}= \frac{|01\rangle-|10\rangle}{\sqrt{2}}\frac{|00\rangle+|11\rangle}{\sqrt{2}}= |\beta_{11}\rangle|\beta_{00}\rangle 20100+011110111000=2 01102 00+11=β11β00

    A 和 B 对第二对 qubit 即 ∣ β 00 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 |\beta_{00}\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} β00=2 00+11 进行测量时,其测量结果相同的概率为 1 ,所以剩下的一对 qubit 即 ∣ β 11 ⟩ |\beta_{11}\rangle β11被保留,但是得到的却不是希望得到的 ∣ β 00 ⟩ |\beta_{00}\rangle β00

总结如下表:

收到的可能状态经过回路后的状态测量后双方进行的操作及得到的结果
∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00 ∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00保留得到 ∣ β 00 ⟩ \vert\beta_{00}\rangle β00
∣ β 00 ⟩ ∣ β 10 ⟩ \vert\beta_{00}\rangle\vert\beta_{10}\rangle β00β10 ∣ β 10 ⟩ ∣ β 11 ⟩ \vert\beta_{10}\rangle\vert\beta_{11}\rangle β10β11舍弃
∣ β 10 ⟩ ∣ β 00 ⟩ \vert\beta_{10}\rangle\vert\beta_{00}\rangle β10β00 ∣ β 11 ⟩ ∣ β 01 ⟩ \vert\beta_{11}\rangle\vert\beta_{01}\rangle β11β01舍弃
∣ β 10 ⟩ ∣ β 10 ⟩ \vert\beta_{10}\rangle\vert\beta_{10}\rangle β10β10 ∣ β 11 ⟩ ∣ β 00 ⟩ \vert\beta_{11}\rangle\vert\beta_{00}\rangle β11β00保留得到 ∣ β 11 ⟩ \vert\beta_{11}\rangle β11

在这里插入图片描述
可以发现,当经过回路后保留的两种状态分别对应的接收时的状态为 ∣ β 00 ⟩ ∣ β 00 ⟩ \vert\beta_{00}\rangle\vert\beta_{00}\rangle β00β00 ∣ β 10 ⟩ ∣ β 10 ⟩ \vert\beta_{10}\rangle\vert\beta_{10}\rangle β10β10 ,其发生的概率为
( 1 − q ) 2 + q 2 (1-q)^2+q^2 (1q)2+q2

在经过 QPA 协议配送后,在保留了 qubit 的情况下,A 和 B 共同拥有正确贝尔状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00 的概率为
( 1 − q ) 2 ( 1 − q ) 2 + q 2 > 1 − q \frac{(1-q)^2}{(1-q)^2+q^2}>1-q (1q)2+q2(1q)2>1q

由此得出结论:通过以上的回路对收到的 qubit 对进行处理后,拥有状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00 的概率是增大的

我们也可以通过验证得到如下结论:QPA 协议适用于 bit 反转错误,同时也适用于位相反转错误

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值