题意:
机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3…N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是 Ti 。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数 Fi 。请确定一个分组方案,使得总费用最小。
题解:
人生第一道斜率+cdq。
首先考虑怎么
n2
dp。
如果从前往后推,那么时间有后效性,要
n3
但是从后往前推就很好想了
大概就是这样:
f[i]=min(f[i],f[j]+(ST[i]-ST[j]+s)*SF[i]);
其中ST,SF为后缀和。
那么假如ST是单调的话,直接斜率优化就可以了。
然而因为出题人的奇怪时空观,所以不是。
那么就cdq搞就好了。
code:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const LL inf=(1LL<<60);
LL n,s,F[300010],T[300010],SF[300010],ST[300010];
LL f[300010];
LL q[300010],tmp[300010];
LL Q[300010],st,ed;
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void cdq(LL l,LL r)
{
if(l==r) return;
LL mid=(l+r)/2;
cdq(mid+1,r);
st=1;ed=0;
for(LL i=r;i>mid;i--)
{
while(st<ed&&(f[q[i]]-f[Q[ed]])*(ST[Q[ed]]-ST[Q[ed-1]])<=(f[Q[ed]]-f[Q[ed-1]])*(ST[q[i]]-ST[Q[ed]])) ed--;
Q[++ed]=q[i];
}
for(LL i=mid;i>=l;i--)
{
while(st<ed&&((ST[Q[st+1]]-ST[Q[st]])*SF[i]>=(f[Q[st+1]]-f[Q[st]]))) st++;
LL j=Q[st];
f[i]=min(f[i],f[j]+(ST[i]-ST[j]+s)*SF[i]);
}
cdq(l,mid);
LL i=l,j=mid+1,len=0;
while(i<=mid&&j<=r)
{
if(ST[q[i]]>=ST[q[j]]) tmp[++len]=q[i++];
else tmp[++len]=q[j++];
}
while(i<=mid) tmp[++len]=q[i++];
while(j<=r) tmp[++len]=q[j++];
for(i=1;i<=len;i++) q[l+i-1]=tmp[i];
}
int main()
{
n=read();s=read();
for(LL i=1;i<=n;i++) T[i]=read(),F[i]=read();
for(LL i=n;i>=1;i--) ST[i]=ST[i+1]+T[i],SF[i]=SF[i+1]+F[i];
for(LL i=1;i<=n;i++) f[i]=inf;
for(LL i=1;i<=n;i++) f[i]=(s+ST[i])*SF[i];
for(LL i=1;i<=n;i++) q[i]=i;
cdq(1,n);
printf("%lld",f[1]);
}