bzoj 2310: ParkII

题意:

要求找一条路径,使得每个点最多经过一次,并且点权值之和最大。

题解:

有独立插头的插头dp。
这篇题解写得很好,各种情况分析具体。
调了一天代码简直想吐。
除了各种手贱错误外需要注意的是,当将两个独立插头连起来,没有其它插头时才能更新答案。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;
const int mod=1000037,inf=1<<30;
int list[2][mod],state[2][mod],hash[mod],num[2],now,ans=-inf;
int map[110][10],n,m;
int get(int s,int p) {return (s>>((p-1)*2))&3;}
void change(int &s,int p,int c) {s^=get(s,p)<<((p-1)*2);s^=c<<((p-1)*2);}
void update(int &x,int y) {x=x>y?x:y;}
int Find(int st,int c)
{
    int ans=0;for(int i=1;i<=m+1;i++) ans+=(get(st,i)==c);
    return ans;
}
void add(int st,int sum)
{
    int s=st%mod;
    while(hash[s]&&list[now][hash[s]]!=st) (s+=1)%=mod;
    if(!hash[s]) hash[s]=++num[now],list[now][num[now]]=st,state[now][num[now]]=sum;
    else update(state[now][hash[s]],sum);
}
int find_2(int st,int j,int c)
{
    int top=c;
    for(int i=j;i<=m+1;i++)
    {
        int tmp=get(st,i);if(tmp==1) top++;if(tmp==2) top--;
        if(!top) return i;
    }
}
int find_1(int st,int j,int c)
{
    int top=c;
    for(int i=j;i;i--)
    {
        int tmp=get(st,i);if(tmp==2) top++;if(tmp==1) top--;
        if(!top) return i;
    }
}
void change_3(int &st,int j)
{
    int pos;
    if(get(st,j)==1) pos=find_2(st,j+1,1);
    if(get(st,j)==2) pos=find_1(st,j-1,1);
    change(st,pos,3);
}
void solve()
{
    num[0]=1;state[0][1]=list[0][1]=now=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            now^=1;num[now]=0;memset(hash,0,sizeof(hash));
            for(int k=1;k<=num[!now];k++)
            {
                int st=list[!now][k],p=get(st,j),q=get(st,j+1),sum=state[!now][k];
                if(!p&&!q)
                {
                    int st1=st;
                    add(st,sum);
                    if(j+1<=m&&i+1<=n)
                        change(st,j,1),change(st,j+1,2),add(st,sum+map[i][j]);
                    st=st1;
                    if(Find(st,3)<2)
                    {
                        if(i+1<=n) change(st,j,3),add(st,sum+map[i][j]);st=st1;
                        if(j+1<=m) change(st,j+1,3),add(st,sum+map[i][j]);
                    }
                }
                else if(!p&&q)
                {
                    int st1=st;
                    if(q==3&&Find(st,3)==1&&Find(st,1)==0) update(ans,sum+map[i][j]);
                    if(j+1<=m) add(st,sum+map[i][j]);
                    if(i+1<=n) change(st,j,q),change(st,j+1,0),add(st,sum+map[i][j]);
                    st=st1;if(q!=3&&Find(st,3)<2) change_3(st,j+1),change(st,j+1,0),add(st,sum+map[i][j]);
                }
                else if(p&&!q)
                {
                    int st1=st;
                    if(p==3&&Find(st,3)==1&&Find(st,1)==0) update(ans,sum+map[i][j]);
                    if(i+1<=n) add(st,sum+map[i][j]);
                    if(j+1<=m) change(st,j,0),change(st,j+1,p),add(st,sum+map[i][j]);
                    st=st1;if(p!=3&&Find(st,3)<2) change_3(st,j),change(st,j,0),add(st,sum+map[i][j]);
                }
                else if(p==3&&q==3) {if(Find(st,3)==2&&Find(st,1)==0) update(ans,sum+map[i][j]);}
                else if(p==2&&q==1) {change(st,j,0);change(st,j+1,0);add(st,sum+map[i][j]);}
                else if(p==1&&q==1) {change(st,j,0);change(st,j+1,0);change(st,find_2(st,j+2,1),1);add(st,sum+map[i][j]);}
                else if(p==2&&q==2) {change(st,j,0);change(st,j+1,0);change(st,find_1(st,j-1,1),2);add(st,sum+map[i][j]);}
                else if(p==3&&q&&q!=3) {change_3(st,j+1);change(st,j,0);change(st,j+1,0);add(st,sum+map[i][j]);}
                else if(q==3&&p&&p!=3) {change_3  (st,j);change(st,j,0);change(st,j+1,0);add(st,sum+map[i][j]);}
            }
        }
        for(int j=1;j<=num[now];j++) list[now][j]<<=2;
    }
}
int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++) scanf("%d",&map[i][j]),ans=max(ans,map[i][j]);
    solve();printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值