《DeepLearning》笔记
《Deep Learning》读书笔记。
南瓜派三蔬
这个作者很懒,什么都没留下…
展开
-
DL | 深入理解L1、L2正则化—补充几个推导
深入理解L1、L2正则化—知乎(1)补充推导1证明:(2)补充推导2证明:翻译 2020-11-12 14:34:21 · 268 阅读 · 0 评论 -
DL | 序列标注模型-BiLSTM+CRF机理概述
1.序列标注模型简介序列标注问题包括自然语言处理中的分词,词性标注,命名实体识别,关键词抽取,词义角色标注等等。例如,命名实体识别(NER)的标注问题就是:对长度为N的输入序列,对其中的每个元素打上标签,得到长度也为N的label,例如人名、地点等标签。2.BiLSTM+CRF模型流程2.1 为什么用BiLSTM+CRF模型CRF是非常经典的序列标注模型,深度学习发展起来之后,深度学习+CRF的模型得到广泛应用。其中的代表就是BiLSTM+CRF。2.2 一种典型结构2.2.1 数据预处理字原创 2020-08-06 11:34:02 · 1450 阅读 · 0 评论 -
主成分分析降维原理——PCA数学推导
1.PCA降维的计算过程下图是从西瓜书里截取的PCA降维过程的图片。需要说明的是,算法中的向量为列向量。假设原始维度为d,样本数目为m,因此特征矩阵X的维度为d×m,W的维度为d×d’。降维的时候,transpose(W)*X得到 d’×m的矩阵,它的每一列,即为降维后的向量。2.数学推导不过西瓜书里没有详细推导(我查了好几本书,包括DeepLearning和Hands On ML,都没...原创 2019-05-03 16:15:38 · 1035 阅读 · 1 评论 -
机器学习中的“学习”的含义
########翻译整理自 《Deep Learning》,【】内为自己加的内容#########1.含义机器学习算法是可以从数据中学习的算法。“学习”的含义是什么?Mitchell 在 1997年给出了如下定义【应该是比较公认的定义,因为在多本机器学习经典著作中均用了此定义】:“A computer program is said to learn from experience E...原创 2019-05-10 15:37:45 · 894 阅读 · 0 评论 -
神经网络一般不对偏置项b进行正则化的原因
整理自 《DeepLearning》Chapter 7.1。对于神经网络,一般只对每一层仿射变换的weights进行正则化惩罚,而不对偏置bias进行正则化。相比于weight,bias训练准确需要的数据要更少。每个weight指定了两个变量之间的关系。weights训练准确需要在很多种情况下的同时观察两个变量,每个bias只控制一个变量。这意味着不对bias正则化,没有引入很多方差(vari...翻译 2019-06-03 18:30:47 · 3478 阅读 · 2 评论 -
深度学习经典优化算法-公式汇总
—————整理自DeepLearning chapter8,主要是方便做算法的对比。1.基础算法1.1 随机梯度下降(SGD,Stochastic Gradient Descent)随机梯度下降可以通过从数据生成分布中独立地抽取的m个样本组成的minibatch的平均梯度来无偏地估计梯度。还有很多其他的点,比如SGD的收敛条件等,详情请参考原书。1.2 动量SGD(SGD with m...原创 2019-07-26 09:49:53 · 1394 阅读 · 0 评论 -
【转载】一文读懂MCMC算法原理
https://www.cnblogs.com/pinard/p/6638955.html这个讲的比较清楚。转载 2019-08-17 11:11:42 · 1773 阅读 · 0 评论