判断白噪声时间序列:ACF和Box.test()

本文介绍了如何通过自相关系数(ACF)及Box.test检验来判断一个时间序列是否为白噪声。文中首先解释了自相关系数的概念,随后给出了利用ACF判断白噪声的具体方法,并以一个长度为50的时间序列为例进行了说明。最后介绍了使用R语言进行Box.test检验的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理自 Forecast:Principles And Practice——chapter 2.9。


一、自相关系数简述

自相关系数就是原始时间序列中第t个数据和第t-k个数的相关系数。亦即y[t]和y[t-k]两个序列之间的相关系数。
在这里插入图片描述

二、根据ACF判断白噪声

在这里插入图片描述
上图为一个白噪声时间序列的数据,考察它的各阶自相关系数(ACF),如下图所示:
白噪声ACF
其中的每个竖线代表自相关系数的值。对于一个长度为T的白噪声序列,可以确定两条边界线±2/sqrt(T),如上图中蓝色虚线所示(这个例子中,T=50。因此两个边界是±2/sqrt(50)=±0.28)。如果有超过5%的竖线超过两条蓝色虚线,则这个时间序列可能不是白噪声。


三、根据Box.test检验

R语言中运行Box.test(Residual, type=“Ljung-Box”),如果P值小于0.05,则不是白噪声。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值