这个题,不得不说自己的英语水平真的不行,当时读题都很费劲,知道题目意思以后,当时想到了容斥,可是不会表示四条边,比赛结束了,知道了可以用二进制枚举子集的方法来实现,不得不说二进制枚举自己真的是一个好东西,做到的很多的题 ,都需要二进制来枚举,还有就是这个题,一开始的组合数初始化,可以通过杨辉三角的方法,还有很多方法,自己来选择
先说一下这个的容斥原理,就是 ABCD分别算四条边, 符合的情况太多,所以减去不符合的情况就可以,应该是
所以就直接二进制枚举就可以了
#include <cstdio>
#include <cstring>
const int N = 500;
const int MOD = 1000007;
int n, m, k, C[N+10][N+10];
void init ()
{
for (int i = 0; i < N; i++)
{
C[i][0] = C[i][i] = 1;
for (int j = 1; j < i; j++)
C[i][j] = (C[i-1][j-1] + C[i-1][j])%MOD;
}
}
int main ()
{
init ();
int cas;
scanf("%d", &cas);
for (int i = 1; i <= cas; i++)
{
scanf("%d%d%d", &n, &m, &k);
int ans = 0;
for (int s = 0; s < 16; s++)
{
int cnt = 0, r = n, c = m;
if (s&1)
{
r--;
cnt++;
}
if (s&2)
{
r--;
cnt++;
}
if (s&4)
{
c--;
cnt++;
}
if (s&8)
{
c--;
cnt++;
}
if (cnt&1)
ans = (ans + MOD - C[r*c][k])%MOD;
else
ans = (ans + C[r*c][k])%MOD;
}
printf("Case %d: %d\n", i, ans);
}
return 0;
}