向量和矩阵范数总结

向量范数

1-范数:向量元素绝对值之和        \left \| x \right \|_{1}=\sum_{i=1}^{N}\left | x \right_{i} |

2-范数:计算向量长度,向量元素绝对值的平方和再开方  \left \| x \right \|_{2}=\sqrt{\sum_{i=1}^{N}x_{i}^{2}}

矩阵范数

1-范数:矩阵的所有列向量的绝对值之和的最大值 \left \| A \right \|_{1}=\max_{j}\sum_{i=1}^{m}\left | a_{ij} \right |

2-范数:\left \| A \right \|_{2}=\sqrt{\lambda }   \lambdaA^{T}A的最大特征值

L0范数:矩阵中的非零元素的个数,表示稀疏

L1范数:矩阵中每个元素绝对值之和

L2范数(F范数):矩阵的各个元素的平方之和,再开平方根

L21范数:(介于L1和L2之间的一种范数)矩阵先以每一列为单位,求每一列的F范数,再将计算的结果求L1范数(也可以理解为向量的1范数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值