Sinkhorn算法

22 篇文章 0 订阅
18 篇文章 0 订阅

Sinkhorn算法

介绍

Sinkhorn算法是一种用于解决最优传输问题的迭代算法。最优传输问题是指在给定两个概率分布 μ \mu μ ν \nu ν的情况下,找到一个最优的转移方案,使得从 μ \mu μ ν \nu ν的转移成本最小。Sinkhorn算法通过迭代的方式逐步优化转移方案,以达到最优传输的目标。

Sinkhorn算法的核心思想是通过交替地更新行和列的缩放因子,来逐步逼近最优转移方案。具体来说,算法的步骤如下:

  1. 初始化转移方案:
    首先,我们需要初始化一个转移方案 P \mathbf{P} P,其中 P \mathbf{P} P是一个 n × m n\times m n×m的矩阵,表示从 μ \mu μ ν \nu ν的转移概率。通常可以使用均匀分布来进行初始化,即 P = 1 n m 1 n × m \mathbf{P}=\frac{1}{nm}\mathbf{1}_{n\times m} P=nm11n×m,其中 1 n × m \mathbf{1}_{n\times m} 1n×m是一个全1的矩阵。

  2. 更新行和列的缩放因子:
    在每次迭代中,我们交替地更新行和列的缩放因子。首先,我们计算当前转移方案 P \mathbf{P} P的行求和向量 a \mathbf{a} a和列求和向量 b \mathbf{b} b,分别表示从 μ \mu μ ν \nu ν的转移概率和从 ν \nu ν μ \mu μ的转移概率。然后,我们通过将 a \mathbf{a} a归一化为一个单位向量,更新列的缩放因子 b \mathbf{b} b,得到 b = ν K T a \mathbf{b}=\frac{\nu}{\mathbf{K}^T\mathbf{a}} b=KTaν,其中 K \mathbf{K} K是一个 n × m n\times m n×m的矩阵,其中 K i j = c i j K_{ij}=c_{ij} Kij=cij表示从位置 i i i到位置 j j j的转移成本。接下来,我们通过将 b \mathbf{b} b归一化为一个单位向量,更新行的缩放因子 a \mathbf{a} a,得到 a = μ K b \mathbf{a}=\frac{\mu}{\mathbf{K}\mathbf{b}} a=Kbμ

  3. 更新转移方案:
    在每次迭代中,我们通过更新转移方案 P \mathbf{P} P来逼近最优转移方案。具体来说,我们通过 P = diag ( a ) K diag ( b ) \mathbf{P}=\text{diag}(\mathbf{a})\mathbf{K}\text{diag}(\mathbf{b}) P=diag(a)Kdiag(b)来更新转移方案,其中 diag ( a ) \text{diag}(\mathbf{a}) diag(a) diag ( b ) \text{diag}(\mathbf{b}) diag(b)分别是行和列缩放因子的对角矩阵。

  4. 重复步骤2和步骤3:
    重复执行步骤2和步骤3,直到收敛或达到预定的迭代次数。

通过交替地更新行和列的缩放因子,并更新转移方案,Sinkhorn算法能够逐步逼近最优传输方案。算法的迭代次数和收敛性可以根据具体的问题和需求进行调整。需要注意的是,Sinkhorn算法在处理大规模问题时可能会面临计算复杂度的挑战,但可以通过一些加速技巧(如近似方法)来提高算法的效率和可扩展性。

示例代码

下面是一个简单的Python代码实现Sinkhorn算法:

import numpy as np

def sinkhorn(p, q, C, epsilon, max_iters=1000):
    """
    Sinkhorn算法实现最优传输问题的解决

    参数:
    - p: 输入概率分布p,形状为(m, )的一维数组
    - q: 输入概率分布q,形状为(n, )的一维数组
    - C: 成本矩阵C,形状为(m, n)的二维数组
    - epsilon: 正则化参数
    - max_iters: 最大迭代次数,默认为1000

    返回:
    - P: 转移矩阵P,形状为(m, n)的二维数组
    """

    assert len(p) == C.shape[0], "维度不匹配"
    assert len(q) == C.shape[1], "维度不匹配"

    K = np.exp(-C / epsilon)  # 构造指数内核矩阵K
    P = np.ones_like(C)  # 初始化转移矩阵P

    for _ in range(max_iters):
        P *= (p / np.sum(K @ P, axis=1, keepdims=True)).T
        P *= (q / np.sum(K.T @ P, axis=1, keepdims=True)).T

    return P

# 示例用法
p = np.array([0.2, 0.3, 0.5])
q = np.array([0.1, 0.4, 0.5])
C = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

P = sinkhorn(p, q, C, epsilon=0.1)
print(P)

上述代码中,sinkhorn函数实现了Sinkhorn算法。它接受输入概率分布pq,以及成本矩阵C和正则化参数epsilon。函数通过迭代更新转移矩阵P,直到收敛或达到最大迭代次数。最后,函数返回计算得到的转移矩阵P

在示例用法中,我们定义了两个概率分布pq,以及成本矩阵C。通过调用sinkhorn函数并传入相应参数,我们可以计算得到最优的转移矩阵P。最后,我们将P打印出来。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值