sklearn计算准确率、精确率、召回率、F1 score(宏平均 微平均)

本文介绍了如何使用sklearn计算准确率、精确率、召回率和F1 score,并探讨了宏平均与微平均的区别。在分类问题中,宏平均给予每个类别相等权重,而微平均考虑所有样本权重。当类别样本数量差异大时,选择宏平均或微平均需依据实际情况。若宏平均显著低于微平均,可能需要检查少数类别的指标表现。
摘要由CSDN通过智能技术生成

混淆矩阵

在这里插入图片描述

混淆矩阵见:我的博客

准确率

import numpy as np
from sklearn.metrics import accuracy_score

y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
print(accuracy_score(y_true, y_pred))  
print(accuracy_score(y_true, y_pred, normalize=False))  

# 在具有二元标签指示符的多标签分类案例中
print(accuracy_score
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值