动态规划7最大子矩阵

To The Max

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 22   Accepted Submission(s) : 17
Font: Times New Roman | Verdana | Georgia
Font Size:  

Problem Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

Input

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2

Sample Output

15
AC代码

#include<iostream>
#include<cstring>
using namespace std;

int map[101][101];


int main()
{
	
	int n;
	while (cin >> n)
	{
		memset(map, 0, sizeof(map));
		int a;
		int max = -100000;
		for (int i = 1; i <= n; ++i)
		{
			for (int j = 1; j <= n; ++j)
			{
				cin >> a;
				map[i][j] = map[i][j - 1] + a;//计算出每一行从0到j的和
			}
		}
		for (int i = 1; i <= n; ++i)
		{
			for (int j = i; j <= n; ++j)//从第i列到第j列
			{
				int sum = 0;
				for (int k = 1; k <= n; ++k)//第i列到第j列的和做最大子段和
				{
					if (sum < 0)
						sum = 0;
					sum += map[k][j] - map[k][i - 1];
					if (sum > max)
						max = sum;
				}
			}
		}
		cout << max << endl;
	}
	system("pause");
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值