一道有趣的数学题(一)

前段时间看到了一道十分有趣的数学题,如下
x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3 ⋯ x 5 + y 5 + z 5 = ? \begin{aligned} &x+y+z=1 \\ &x^2+y^2+z^2=2 \\ &x^3+y^3+z^3=3 \\ &\cdots \\ &x^5+y^5+z^5=? \end{aligned} x+y+z=1x2+y2+z2=2x3+y3+z3=3x5+y5+z5=?
这规律看着挺明显哈,那 x 5 + y 5 + z 5 x^5+y^5+z^5 x5+y5+z5肯定等于 5 5 5啊,这题小学僧都随便做~那很不好意思哦,这道题的答案其实是 6 6 6(笑。

我们先从一个最简单的做法做起,显然 x , y , z x,y,z x,y,z是如下方程的解
( r − x ) ( r − y ) ( r − z ) = 0 = > r 3 − ( x + y + z ) r 2 + ( x y + y z + x z ) r − x y z = 0 (1) \begin{aligned} &(r-x)(r-y)(r-z)=0 \\ =>&r^3-(x+y+z)r^2+(xy+yz+xz)r-xyz=0 \tag{1}\\ \end{aligned} =>(rx)(ry)(rz)=0r3(x+y+z)r2+(xy+yz+xz)rxyz=0(1)

  • x + y + z = 1 x+y+z=1 x+y+z=1

  • ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + x z ) = > x y + y z + x z = 1 − 2 2 = − 1 2 (x+y+z)^2=x^2+y^2+z^2 +2(xy+yz+xz) => xy+yz+xz={1-2 \over 2} = -{1 \over 2} (x+y+z)2=x2+y2+z2+2(xy+yz+xz)=>xy+yz+xz=212=21

  • x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − ( x y + y z + x z ) ) = > x y z = 3 − 1 × ( 2 + 1 2 ) 3 = 1 6 x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-(xy+yz+xz))=>xyz={3-1 \times (2+{1\over2}) \over 3}={1\over6} x3+y3+z33xyz=(x+y+z)(x2+y2+z2(xy+yz+xz))=>xyz=331×(2+21)=61

将上述三个式子代入 ( 1 ) (1) (1)式有
r 3 − r 2 − 1 2 r − 1 6 = 0 (2) r^3-r^2-{1\over2}r-{1\over6}=0 \tag{2} r3r221r61=0(2)
这里 r = x , y , z r=x,y,z r=x,y,z的时候等式成立,那么对 ( 2 ) (2) (2)式,我们左乘个 r r r就有
r 4 − r 3 − 1 2 r 2 − 1 6 r = 0 r^4-r^3-{1\over2}r^2-{1\over6}r=0 r4r321r261r=0
然后分别将 x , y , z x,y,z x,y,z代入可以得到
{ x 4 − x 3 − 1 2 x 2 − 1 6 x = 0 y 4 − y 3 − 1 2 y 2 − 1 6 y = 0 z 4 − z 3 − 1 2 z 2 − 1 6 z = 0 \begin{cases} x^4-x^3-{1\over2}x^2-{1\over6}x=0 \\ y^4-y^3-{1\over2}y^2-{1\over6}y=0 \\ z^4-z^3-{1\over2}z^2-{1\over6}z=0 \end{cases} x4x321x261x=0y4y321y261y=0z4z321z261z=0
三个式子相加,那么有
( x 4 + y 4 + z 4 ) − ( x 3 + y 3 + z 3 ) − 1 2 ( x 2 + y 2 + z 2 ) − 1 6 ( x + y + z ) = 0 (x^4+y^4+z^4)-(x^3+y^3+z^3)-{1\over2}(x^2+y^2+z^2)-{1\over6}(x+y+z)=0 (x4+y4+z4)(x3+y3+z3)21(x2+y2+z2)61(x+y+z)=0
那么可以得到
x 4 + y 4 + z 4 = 3 + 1 2 × 2 + 1 6 = 25 6 x^4+y^4+z^4=3+{1\over2}\times2+{1\over6}={25\over6} x4+y4+z4=3+21×2+61=625
同理我们对 ( 2 ) (2) (2)式左右同乘 r 2 r^2 r2,那么就有
r 5 − r 4 − 1 2 r 3 − 1 6 r 2 = 0 r^5-r^4-{1\over2}r^3-{1\over6}r^2=0 r5r421r361r2=0
分别代入 x , y , z x,y,z x,y,z相加,就有
( x 5 + y 5 + z 5 ) − ( x 4 + y 4 + z 4 ) − 1 2 ( x 3 + y 3 + z 3 ) − 1 6 ( x 2 + y 2 + z 2 ) = 0 (x^5+y^5+z^5)-(x^4+y^4+z^4)-{1\over2}(x^3+y^3+z^3)-{1\over6}(x^2+y^2+z^2)=0 (x5+y5+z5)(x4+y4+z4)21(x3+y3+z3)61(x2+y2+z2)=0
那么就有
( x 5 + y 5 + z 5 ) = 25 6 + 1 2 × 3 + 1 6 × 2 = 6 (x^5+y^5+z^5)={25\over6} + {1\over 2} \times3+{1\over6}\times2=6 (x5+y5+z5)=625+21×3+61×2=6
这题到这里应该就结束了,但是我们要善于思考嘛,那 x n + y n + z n x^n+y^n+z^n xn+yn+zn呢?注意到 ( 2 ) (2) (2)式隐含的信息,假如我们令数列 a n = x n + y n + z n a_n=x^n+y^n+z^n an=xn+yn+zn,那么显然有 a 1 = 1 , a 2 = 2 , a 3 = 3 a_1=1,a_2=2,a_3=3 a1=1,a2=2,a3=3,此外根据刚才的运算,我们知道

a n − a n − 1 − 1 2 a n − 2 − 1 6 a n − 3 = 0 a_{n}-a_{n-1}-{1\over2}a_{n-2}-{1\over6}a_{n-3}=0 anan121an261an3=0
那么依照矩阵求解递推式的原理,我们容易写出如下等式组
{ a n = a n − 1 + 1 2 a n − 2 + 1 6 a n − 3 a n − 1 = a n − 1 a n − 2 = a n − 2 \begin{cases} a_{n}=a_{n-1}+{1\over2}a_{n-2}+{1\over6}a_{n-3} \\ a_{n-1}=a_{n-1} \\ a_{n-2}=a_{n-2} \end{cases} an=an1+21an2+61an3an1=an1an2=an2
将其写成矩阵的形式,那么有
[ a n a n − 1 a n − 2 ] = [ 1 1 2 1 6 1 0 0 0 1 0 ] [ a n − 1 a n − 2 a n − 3 ] \begin{bmatrix} a_n \\ a_{n-1} \\ a_{n-2} \end{bmatrix} = \begin{bmatrix} 1 &{1\over2} &{1\over6} \\ 1 &0 &0 \\ 0 &1 &0 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-2} \\ a_{n-3} \end{bmatrix} anan1an2=11021016100an1an2an3
那么将这个式子不断迭代,我们知道
[ a n a n − 1 a n − 2 ] = [ 1 1 2 1 6 1 0 0 0 1 0 ] n − 3 [ 3 2 1 ] \begin{bmatrix} a_n \\ a_{n-1} \\ a_{n-2} \end{bmatrix} = \begin{bmatrix} 1 &{1\over2} &{1\over6} \\ 1 &0 &0 \\ 0 &1 &0 \end{bmatrix}^{n-3} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} anan1an2=11021016100n3321
我们令
A = [ 1 1 2 1 6 1 0 0 0 1 0 ] A=\begin{bmatrix} 1 &{1\over2} &{1\over6} \\ 1 &0 &0 \\ 0 &1 &0 \end{bmatrix} A=11021016100
那么问题就转化成了求 A n A^n An的问题,那么我们知道矩阵的 n n n次幂一般可以通过矩阵的特征值分解去求,但很可惜,这个矩阵并没有三个特征值,实际上在实数域上只有一个特征值,此外三次方程的求解比较麻烦,特征方程如下
λ 3 − λ 2 − 1 2 λ − 1 6 = 0 (3) \lambda^3-\lambda^2-{1\over2}\lambda-{1\over6}=0 \tag{3} λ3λ221λ61=0(3)
我这里就借助python的numpy库给出一个近似解

import numpy as np
a = np.array([[1, 1/2, 1/6], [1, 0, 0], [0, 1, 0]])
eig = np.linalg.eigvals(a)

输出的结果,整理后如下
λ 1 = 1.43084957 + 0. j λ 2 = − 0.21542478 + 0.2647132 j λ 3 = − 0.21542478 − 0.2647132 j \begin{aligned} &\lambda_1 = 1.43084957+0.j \\ &\lambda_2 = -0.21542478+0.2647132j\\ &\lambda_3 = -0.21542478-0.2647132j \end{aligned} λ1=1.43084957+0.jλ2=0.21542478+0.2647132jλ3=0.215424780.2647132j
正常的话,再依据这个矩阵求出特征向量之类,然后将 A A A换成 U Σ U T U\Sigma U^T UΣUT,那么这题基本就算完事。可针对这道题呢?这三个特征值其实对应的就是 x , y , z x,y,z x,y,z的解啊!!!因为方程 3 3 3不就是方程 ( 2 ) (2) (2)嘛?所以我们兜了个大圈子,最后发现还是直接解三次方程好一点。那么结果就有了
x n + y n + z n = 1.4308495 7 n + ( − 0.21542478 + 0.2647132 j ) n + ( − 0.21542478 − 0.2647132 j ) n x^n+y^n+z^n=1.43084957^n+(-0.21542478+0.2647132j)^n+(-0.21542478-0.2647132j)^n xn+yn+zn=1.43084957n+(0.21542478+0.2647132j)n+(0.215424780.2647132j)n
有人可能要质疑了,你这个解不行啊,不够math啊。说得好!!!我李某元也是这么认为的。那我就给你一组比较math的 x , y , z x,y,z xyz的解,其实python的一个库sympy可以用来做符号计算,要求解我们的方程组,只需要下面几条代码就可以了

import sympy
x = sympy.Symbol('x')
y = sympy.Symbol('y')
z = sympy.Symbol('z')
result = sympy.solve([x + y + z - 1 , x**2 + y**2 + z**2 - 2, x**3 + y**3+ z**3 - 3], [x, y, z])

输出的结果我给你整理一下哈,算了,懒得整理成latex的格式了,看个大概吧,嘻嘻 ⋯ \cdots

在这里插入图片描述

图中的 r e s u l t [ 0 ] , r e s u l t [ 1 ] , r e s u l t [ 2 ] result[0],result[1],result[2] result[0],result[1],result[2]分别可以对应 x , y , z x,y,z xyz的一组解,注意这个方程其实是有 6 6 6组解的,我们这里只给出三个让大家瞅瞅啥样哈。不知道这个结果是不是你比较喜欢,反正我不喜欢…

好了,那么大功告成!!!!当然这道题也有更一般的解法,但是用到了群论、数论之类的,其实就是一些很基础的知识,只不过讲的高大上了点,和我的做法本质是一样的,这里不过多引入,有兴趣的可以看知乎上给出的高大上的解法

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值