《算法笔记》编程笔记——第五章:简单数学题

《算法笔记》编程笔记——第五章:简单数学题

一、最大公约数与最小公倍数

//最大公约数的递归计算公式
int gcd(int a, int b){
    if(b == 0)return a; //0和任意一个整数a的最大公约数都是a,注意不是0
    else return gcd(b, a % b);
}

二、分数的计算

  • 分数的化简:①结果为负,分子分母变为相反数(最简需要分母为正);②结果为0,使分子为0,分母为1;③其他情况下,计算出分子分母最大公约数,分别除以最大公约数,表示约分。

  • 分数的加减乘除,按数学公式书写代码即可;注意数据类型最好使用long long 类型。

  • 代码模板如下:

    //首先用结构体来存放分数
    struct Fraction{
        long long  up, down;
    };
    //分数化简
    Fraction reduction(Fraction result){
        if(result.down < 0){
            result.up = -result.up;
            result.down = -result.down;
        }
        if(result.up == 0)result.down = 1;
        else{
            int d = gcd(abs(result.up), abs(result.down));
            result.up /= d;
            result.down /= d;
        }
        return result;
    }
    
    //分数运算(加减乘除的式子)
    
    //分数输出
    void showResult(Fraction r){
        r  = reduction(r);//先进行分数化简
        if(r.down == 1)printf("%lld", r.up);
        else{
            printf("%d/%d", r.up, r.down);
        }
    }
    

三、素数

  • 素数判断常用代码块:

    //通常求素数直接用平方法进行判断即可。
    bool isPrime(int n){
        if(n == 1)return false;
        int sqr = (int)sqrt(1.0 * n);//sqrt头文件为math.h,同时,sqrt只能开浮点类型,所以需要 * 1.0
        for(int i = 2; i <= sqr; i++){
            if(n % i == 0)return false;
        }
        return true;
    }
    //如果n没哟接近int变量的范围上界,还有更加简便的方法
    bool isPrime(int n){
        if(n <= 1)return false;
        for(int i = 2; i * i <= n; i++){
            if(n % i == 0)return false;
        }
        return true;
    }
    
    //求素数表
    int prime[maxn], pNum = 0;
    void find_prime(){
        for(int i = 1; i < maxn; i++){
            if(is_prime(i) == true){
                prime[pNum++] = 1;
            }
        }
    }
    
  • 传统求素数法,只适用于n小于10^5,如果n大于这个值时,适合用“埃氏筛法”求素数。但是“埃氏筛法”当数字太大时,p数组无法开那么大,这也是个缺陷。

    //寻找[1-100]之间的素数。maxn设置为101,而不是100
    const int maxn = 101;//找的数的上界,注意要比n大1
    int prime[maxn], pNum = 0;
    unordered_map<int, int> p//标记数是否为素数,为0表示是素数,为1表示不是素数
    void find_prime(){
        for(int i = 2; i < maxn; i++){ //注意循环从2开始,因为1既不是素数也不是偶数
            if(p[i] == 0){
                prime[pNum++] = i;
                //将素数的倍数的数全部标记为合数。
                for(int j = i + i; j < maxn; j += i){
                    p[j] = 1;
                }
            }
        }
    }
    

四、质因子分解

  • 分解思路:

    struct factor{
        int x, cnt;
    }fac[10];//在int范围内,fac数组只要开10就足够用
    //思路是,质因子的个数如果大于2,也就是不是1和这个数本身,那么必定存在质因子小于等于sqrt(n);反之,就是1和其本身
    //找出所有的质因数(素数),然后再判断是否为此数的质因数。
    if(n % prime[i] == 0){//是质因数
        fac[num].x = prime[i];
        fac[num].cnt = 0;
        while(n % prime[i] == 0){
            fac[num].cnt++;//计算此质因数的个数
            n /= prime[i];
        }
        num++;//个数计算结束,num增加
    }
    //当上面的计算结果显示n仍大于1的时候,说明该数是一个质数。
    if(n != 1){
        fac[num].x = n;
        fac[num].cnt = 1;
    }
    

五、大整数计算

//大整数的存储
struct bign{
    int d[1000];
    int len;
    //构造函数对结构体进行初始化,函数名与结构体名一致
    bign(){
        memset(d, 0, sizeof(d));
        len = 0;
    }
}
//然后将大整数按字符串的方式读入到字符数组中,再将字符数组转为到结构体中的整数数组中(是字符数组最后一位到整数数组第一位)。
bign change(char str[]){
    bign a;
    a.len = strlen(str);
    for(int i = 0; i < a.len; i++){
        a.d[i] = str[a.len - i - 1] - '0';//逆序转换为数字存储
    }
    return a;
}
//比较两个bign变量的大小
int compare(bign a, bign b){
    if(a.len > b.len)return 1;//如果a的长度大,那就说明a数大,返回-1
    else if(a.len < b.len)return -1;//b大
    else{
        for(int i = a.len - 1;i >= 0; i--){//表示从高位往低位进行比较
            if(a.d[i] > b.d[i]) return 1;
            else if(a.d[i] < b.d[i]) return -1;
        }
        return 0;//两数相等
    }
}
  • 高精度与高精度加法

    bign add(bign a, bign b){//传入结构体 
    	bign c;
    	int carry = 0;//进位初始化
    	for(int i = 0; i < a.len || i < b.len; i++){
    		int temp = a.d[i] + b.d[i] + carry;
    		c.d[i] = temp % 10;
    		c.len++;
    		carry = temp / 10;
    	} 
    	if(carry != 0){//最高位有进位的时候
    		c.d[len++] = carry;
    	}
    	return c;
    } 
    
  • 高精度与低精度乘法

    bign multi(bign a, int b){
        bign c;
    	int carry = 0;
    	for(int i = 0; i < a.len; i++){
    		int temp = a.d[i] * b + carry;
    		//下面的部分与加法类似 
    		c.d[c.len++] = temp % 10;//个位作为该位结果
    		carry = temp / 10; //高位部分作为新的进位
    	}
    	while(carry != 0){//和加法不一致之处在于乘法的进位可能不只一位 
    		c.d[c.len++] = carry % 10;
    		carry /= 10;
    	}
    	return c;
    }
    
  • 高精度数减法

    • 注意点:事先比较两数的大小,保证减数大;如果原先结果为负,只要添负号即可。
    bign sub(bign a, bign b){
    	bign c;
    	for(int i = 0; i < a.len || i < b.len; i++){
    		if(a.d[i] < b.d[i]){//这位上的数字不够减 
    			a.d[i+1]--;
    			a.d[i] += 10;
    		}
    		c.d[c.len++] = a.d[i] - b.d[i];
    	}
    	//去除减数最高位为0的,同时保证至少保留一位数字 
    	if(c.len - 1 >= 1 && c.d[c.len - 1] == 0){
    		c.len--;
    	}
    	return c;
    } 
    
  • 高精度与低精度除法

    bign divide(bign a, int b, int &r){//考虑到很多时候余数要返回,所以引用使用 
    	r = 0;
    	bign c;
    	c.len = a.len;
    	for(int i = a.len - 1; i >= 0; i--){//从高位开始计算 
    		r = r * 10 + a.d[i];//将上次遗留的余数加上
    		if(r < b){
    			c.d[i] = 0;//数组下标直接就是i,因为在前面已经让c的len等于a的len 
    		} 
    		else{
    			c.d[i] = r / b;//商 
    			r = r % b;//新的余数 
    		}
    	}
        //乘除法的进位与借位都用while循环来判断
    	while(c.len - 1 >= 1 && c.d[c.len - 1] == 0){
    		c.len--; //去除高位的0,同时至少保留一位最低位
    	}
    	return c;
    }
    

六、组合数(需要更加熟悉)

  • (n!)的质因子p个数:算法复杂度为O(logn)

    //n!(个数) = (n/p + n/(p^2) + n/(p^3)+……)
    //代码如下:
    int cal(int n, int p){
        int ans = 0;
        while(n){
            ans += n / p;
            n /= p;
        }
        return ans;
    }
    //也有式子:n!(个数) = n / p + (n / p)!(个数)故有以下递归算法
    int cal(int n, int p){
        if(n < p)return 0;
        return n / p + cal(n / p, p);
    }
    
  • 组合数的计算:C(m, n) % p. [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1ykbqIkZ-1614779751836)(C:\Users\dd\AppData\Roaming\Typora\typora-user-images\image-20201002104101021.png)]

    //一、递推法,适用于m<=n<=1000, p <= 10^9(素性没有限制)
    void calC(){
        for(int i = 0; i <= n; i++){//边界标记
            res[i][0] = res[i][i] = 1;
        }
        //注意i和j开始的值
        for(int i = 2; i <= n; i++){
            for(int j = 1; j <= i / 2; j++){
                res[i][j] = (res[i-1][j] + res[i-1][j-1]) % p;//公式
                res[i][i-j] = res[i][j]; //组合数对称相等的关系
            }
        }
    }
    //递归式, C(n, m) = C(n-1, m) + C(n-1, m-1);边界C(n, 0) = C(n, n) = 1;
    int c(int n, int m, int p){
        if(m==0 || m == n)return 1;//组合数全选和全部选的种数
        if(res[n][m] != 0)return res[n][m];//表示已经有值计算出来,直接调用就可以
        return res[n][m] = (c(n-1, m) + c(n-1, m-1))%p;//赋值并返回
    }
    
    
    //二、定义式计算,适用于m<=n<=10^6, p <= 10^9(p的素性没有限制)
    //思路:将组合数进行质因子分解,假设分解结果为C = p1^c1 * p2^cc2 * p3^c3……%p;
    //需要先将<=n的素数全部找出
    int prime[maxn];
    //cal()函数,计算质因数p的个数
    int cal(int n, int p){
        int ans = 0;
        while(n){
            ans += n / p;
            n /= p;
        }
        return ans;
    }
    //快速幂函数
    typedef long long LL;
    LL binaryPow(LL a, LL b, LL m){
        if(b == 0)return 1;//一个数的0次方为1
        if(b % 2 == 0)return a * binaryPow(a, b - 1, m) % m;//此处b % 2 == 0 可以用 if(b & 1)代替,判断b的末尾是否为1,进行了位与操作。可以加快执行速度
        else{//b为偶数
            LL mul = binaryPow(a, b / 2, m);//此处先算出单个,最后再相乘,降低时间复杂度
            return mul * mul % m;//得到结果
        }
    }
    //计算C(n, m) % p;
    int calC(int n, int m, int p){
        int ans = 1;
        for(int i = 0; prime[i] <= n; i++){
            //cal()函数为计算阶乘质因子的个数
            //下面的公式就是计算每个阶乘关于p的质因子的个数。
          int c = cal(n, prime[i]) - cal(m, prime[i]) - cal(n - m, prime[i]);
            //快速幂计算公式,计算prime[i]^c % p
            ans = ans * binaryPow(prime[i], c, p);
        }
        return ans;
    }
    
    //卢卡斯定理计算,适用于n.m<= 10^18,p <= 10^且p是素数
    int Lucas(int n, int m){
        if(m == 0)return 1;
        return CalC(n%p, m%p) * Lucas(n / p, m / p) % p;//此处将p作为全局变量,所以没有在函数内进行传值。
    }
    
  • 扩展欧几里得算法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想总比行动多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值