优化——拉格朗日乘子法与拉格朗日对偶

拉格朗日乘子法要解决的式带有约束的最优化问题,约束条件分为等式约束和不等式约束。

等式约束可以直接应用拉格朗日乘子法去求取最优值;含不等式约束的优化问题可以转化为在满足KKT条件下应用拉格朗日乘子法求解。

拉格朗日法求得的不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解

无约束优化

对于约束变量 x ∈ R N x\in \mathbb{R}^N xRN的函数 f ( x ) f(x) f(x),无约束优化问题如下:
min ⁡ x f ( x ) \min_x f(x) xminf(x)
这个问题可以直接使目标函数导数为0即可,即 ∇ x f ( x ) = 0 \nabla_xf(x) = 0 xf(x)=0,或者用梯度下降法使 x x x沿着负梯度方向逐步逼近极小值点

等式约束优化

当目标函数加上约束条件后,问题变为以下形式:
min ⁡ x   f ( x ) s . t .     h i ( x ) = 0 , i = 1 , 2 , . . . , m \begin{aligned} &\min_{x } \ f(x) \\ &s.t. \ \ \ h_i(x) = 0 , i = 1,2,...,m \\ \end{aligned} xmin f(x)s.t.   hi(x)=0,i=1,2,...,m
约束条件会将解的范围限定在一个可行域,此时不一定能得到 ∇ x f ( x ) = 0 \nabla_xf(x)=0 xf(x)=0的点,只需要找到在可行域使 f ( x ) f(x) f(x)最小的值即可。引入拉格朗日乘子法:
L ( x , α ) = f ( x ) + ∑ i = 1 m α i h i ( x ) L(x,\alpha) = f(x) + \sum_{i=1}^m \alpha_i h_i(x) L(x,α)=f(x)+i=1mαihi(x)
分别对 x , α x, \alpha x,α求偏导使其为0:

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值