干货|(含实例) 一文详解模型选择准则之BIC和AIC

最近在撰写笔记 【Sklearn源码学习笔记】(含官网样例解读)无监督学习之高斯混合模型 的过程中,官方Sklearn源码中有用BIC来估计高斯混合模型不同协方差矩阵和分量数下的得分,遂将BIC和AIC相关知识进行总结记录。

关于我的更多学习笔记,欢迎您关注“武汉AI算法研习”公众号,本文作者微信comrliuyu。

本文分三个部分“【BIC】”、“【AIC】”、“【Sklearn中bic公式】”来进行展开,总共阅读时间大约8分钟。

似然函数我们不陌生,在统计学中似然函数是种包含统计模型参数的函数,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ),似然函数在参数估计中扮演着重要的角色。实际过程中假定某个变量服从某个分布,这个分布具有未知参数需要确定,我们通过极大似然估计可以得到最终模型的参数,这就完成了概率模型的训练(实际上概率模型的训练过程就是参数估计)。

然后实际上我们仍然会得到针对训练数据的多个较为合理的模型,比如混合高斯模型中不同的协方差矩阵和不同的分量数会产生不同的结果,如何在这些模型中选择最优的模型呢?

模型选择问题就是需要在模型复杂性和模型对数据集描述能力(即似然函数)之间寻找一个平衡,而常用的模型选择方法就是BIC和AIC,模型选择中AIC和BIC值均是越小越好。在BIC和AIC描述过程中,当训练数据足够多时,可以不断提高模型精度,即是似然函数会越大,模型对数据集的描述能力越强,而复杂性方面往往体现在参数数量,即参数越少越好,通过下式就可以理解AIC和BIC公式的原理,实际运用中BIC的运用较多。

【BIC:Bayesian Information Criterion 】

BIC(贝叶斯信息准则)用于实际中选择最优的模型,下式中k为模型参数个数,n为样本数量,L为似然函数kln(n)惩罚项在维数过大且训练样本数据相对较少的情况下,可以有效避免出现维度灾难现象。BIC中对于模型参数个数的惩罚项因为加入了ln(n)考虑了样本数量,比AIC的大,当样本数量过多时,可以避免模型精度过高造成模型复杂度过高

 

【AIC:Akaike Information Criterion】

AIC(赤池信息准则)建立在信息熵的基础上,是用来衡量统计模型拟合优良性的一种指标,计算公式见下,式中K是模型参数个数,L是似然函数,理论上AIC值越小的模型越好。实际中我们对模型进行选择时,当两个模型似然函数差异不显著时,下式中第一项模型参数个数起决定作用,即模型复杂度越小的模型越优


 

【Sklearn中bic公式】

下代码中X为输入样本,其中self.score(x)计算得到平均最大似然函数值,X.shaper[0] 表样本数。

    def bic(self, X):
        return (-2 * self.score(X) * X.shape[0] +
                self._n_parameters() * np.log(X.shape[0]))

 

 

 

 

<think>嗯,我现在需要比较理解对数线性模型中AICBIC准则的应用及差异。首先,我应该回顾一下AICBIC的基本概念,然后看看它们在对数线性模型中的具体应用。 我记得AIC是赤池信息准则,而BIC是贝叶斯信息准则。两者都是用来进行模型选择的,通过平衡模型的拟合优度复杂度来选择最佳模型。但它们的公式侧重点可能不同。根据引用[4],AICBIC都加入了惩罚项,但具体怎么计算的呢? AIC公式应该是$-2\ln(L) + 2k$,其中L是似然函数的最大值,k是参数个数。而BIC公式是$-2\ln(L) + k\ln(n)$,n是样本量。所以BIC对参数个数的惩罚更严格,尤其是当样本量大的时候。这样在样本量大时,BIC倾向于选择更简单的模型,而AIC可能选择更复杂的,对吗? 那在对数线性模型中,这两个准则的应用有什么不同呢?对数线性模型常用于列联表分析,分析多个分类变量之间的关系。模型选择在这里很重要,因为变量之间可能存在交互效应,需要确定哪些交互项应该包在模型中。 根据引用[3],AIC的绝对值不重要,重要的是比较不同模型的AIC值,选择较小的那个。而BIC同样如此。但引用[4]提到,AIC的目标是找到预测能力最好的模型,可能有过拟合的风险,而BIC更倾向于找到真实的模型,假设真实模型在候选模型中。 所以在对数线性模型中,如果目标是预测,可能优先考虑AIC;如果希望找到真实的变量关系,可能选BIC。但需要确认样本量大小,因为BIC的惩罚项涉及样本量,大样本时更严格。 另外,引用[1][2]提到在sklearn中使用AICBIC进行模型选择,比如Lasso回归。这可能与对数线性模型的应用类似,都是通过信息准则来权衡拟合复杂度。 但具体到对数线性模型,比如用Poisson回归或者log-linear模型时,似然函数的具体形式会影响AICBIC的计算。这时候需要注意模型的对数似然计算是否正确,参数的数量是否准确,包括交互项的参数。 例如,一个包三个变量的对数线性模型,可能有主效应、二阶交互、三阶交互等不同复杂度的模型。用AICBIC分别评估,可能会得到不同的最优模型。这时候需要根据研究目的选择准则。 另一个问题是,使用场景方面,AIC适用于样本量较小或当真实模型不在候选模型中时,而BIC在样本量大时更有效,且假设真实模型在候选模型中。这可能影响对数线性模型的选择结果。 总结起来,区别可能在于惩罚项的不同导致的选择倾向,以及不同的理论背景(AIC基于信息论,BIC基于贝叶斯后验概率)。应用场景则根据样本量、研究目的(预测还是解释真实结构)来选择。 需要验证这些观点是否正确,并确保引用的资料支持这些结论。例如引用[3]提到AIC对比时绝对值不重要,而引用[4]指出两者的不同惩罚项理论依据。这些都可以用来支撑回答。 可能还需要考虑具体例子,比如在对数线性模型中选择不同交互项时,AICBIC如何影响模型选择结果。比如,当存在多个可能的交互项时,AIC可能选择一个包更多交互项的模型,而BIC可能选择一个更简洁的模型,尤其是在大样本情况下。 最后,生成相关问题需要考虑用户可能进一步的问题,比如如何计算对数线性模型的AIC/BIC,或者在实际应用中如何选择这两个准则,或者它们与其他准则(如交叉验证)的比较。</think>### 对数线性模型中AICBIC准则的比较 #### 1. **核心区别** - **公式差异** - **AIC**: $ \text{AIC} = -2\ln(L) + 2k $ - **BIC**: $ \text{BIC} = -2\ln(L) + k\ln(n) $ 其中,$L$为模型最大似然值,$k$为参数个数,$n$为样本量。 BIC的惩罚项随样本量增大而增强,对复杂度更敏感[^4]。 - **理论目标** - AIC旨在最小化预测误差,适合**模型预测**场景,即使真实模型不在候选范围内[^4]。 - BIC基于贝叶斯后验概率,假设真实模型在候选模型中,适合**探索真实数据结构**。 #### 2. **应用差异** - **样本量影响** - 小样本时,AIC可能更优;大样本时,BIC倾向于选择更简单模型[^4]。 - 例如:对数线性模型中,若分析$10^4$样本的列联表,BIC可能忽略弱交互项。 - **模型复杂度控制** - AIC允许适度过拟合以提高预测能力。 - BIC严格惩罚参数数量,避免冗余变量(如高阶交互项)[^2]。 #### 3. **使用场景** - **选择AIC** - 预测新数据、候选模型不包真实模型、样本量较小[^3]。 - 示例:电商用户行为对数线性模型,需预测点击率时。 - **选择BIC** - 探索变量间真实关系、样本量较大、假设真实模型在候选中。 - 示例:医学列联表分析,需确定疾病与多因素的关联结构时。 #### 4. **计算示例(Python)** ```python import statsmodels.api as sm # 对数线性模型(以列联表为例) data = sm.datasets.get_rdataset("Titanic").data model = sm.formula.glm( "count ~ C(Class) * C(Sex) * C(Age)", data=data, family=sm.families.Poisson() ).fit() print(f"AIC: {model.aic}") # 输出AIC值 print(f"BIC: {model.bic}") # 输出BIC值 ``` 通过对比不同模型(如是否包三阶交互项)的AIC/BIC,选择更优模型。 #### 5. **注意事项** - 避免跨工具计算AIC/BIC,因实现方式可能不同[^3]。 - 需结合假设检验(如似然比检验)综合评估模型[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值