《统计学习方法》第7章习题答案(持续更新)

注:前面的习题待完善,稍后补充。

7.3

min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i 2 s . t . y i ( w ⋅ x i + b ) ≥ 1 − ξ i , i = 1 , 2 , … , N ξ i ≥ 0 , i = 1 , 2 , … , N \min_{w,b,\xi} \frac{1}{2} {\parallel w \parallel}^2 + C \sum_{i=1}^N {\xi_i}^2 \\s.t. \quad y_i(w \cdot x_i + b) \ge 1 - \xi_i, i =1,2,\ldots,N \\ \xi_i \ge0, i=1,2,\ldots,N w,b,ξmin21w2+Ci=1Nξi2s.t.yi(wxi+b)1ξi,i=1,2,,Nξi0,i=1,2,,N

对应的拉格朗日函数是 L ( w , b , ξ , α , γ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i 2 + ∑ i = 1 N α i ( 1 − ξ i − y i ( w ⋅ x i + b ) ) − ∑ i = 1 N γ i ξ i L(w,b,\xi,\alpha,\gamma) = \frac{1}{2} {\parallel w \parallel}^2 + C \sum_{i=1}^N {\xi_i}^2 +\sum_{i=1}^N \alpha_i ( 1 - \xi_i -y_i(w \cdot x_i + b) ) -\sum_{i=1}^N \gamma_i \xi_i L(w,b,ξ,α,γ)=21w2+Ci=1Nξi2+i=1Nαi(1ξiyi(wxi+b))i=1Nγiξi

使用KKT条件得到

∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 ∂ L ∂ b = − ∑ i = 1 N α i y i = 0 ∂ L ∂ ξ i = 2 C ξ i − α i − γ i = 0 \frac{\partial L}{\partial w} = w - \sum_{i=1}^N \alpha_i y_i x_i = 0 \\ \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i y_i = 0 \\ \frac{\partial L}{\partial \xi_i} = 2C \xi_i - \alpha_i - \gamma_i=0 wL=wi=1Nαiyixi=0bL=i=1Nαiyi=0ξiL=2Cξiαiγi=0

因此

w = ∑ i = 1 N α i y i x i ∑ i = 1 N α i y i = 0 2 C ξ i = α i + γ i w = \sum_{i=1}^N \alpha_i y_i x_i \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 2C \xi_i = \alpha_i + \gamma_i w=i=1Nαiyixii=1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值