李航《统计学习方法》——第七章 支持向量机

由于网上资料很多,这里就不再对算法原理进行推导,仅给出博主用Python实现的代码,供大家参考

适用问题:二类分类

实验数据:二分类的数据 train_binary.csv

SVM有三种模型,由简至繁为

  • 当训练数据训练可分时,通过硬间隔最大化,可学习到硬间隔支持向量机,又叫线性可分支持向量机
  • 当训练数据训练近似可分时,通过软间隔最大化,可学习到软间隔支持向量机,又叫线性支持向量机
  • 当训练数据训练不可分时,通过软间隔最大化及核技巧(kernel trick),可学习到非线性支持向量机


实现代码(用sklearn实现)

# encoding=utf-8

import time

import numpy as np
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn import datasets
from sklearn import svm

if __name__ == '__main__':

    print('prepare datasets...')
    # Iris数据集
    # iris=datasets.load_iris()
    # features=iris.data
    # labels=iris.target

    # MINST数据集
    raw_data = pd.read_csv('../data/train_binary.csv', header=0)  # 读取csv数据,并将第一行视为表头,返回DataFrame类型
    data = raw_data.values
    features = data[::, 1::]
    labels = data[::, 0]    # 选取33%数据作为测试集,剩余为训练集

    train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33, random_state=0)

    time_2=time.time()
    print('Start training...')
    clf = svm.SVC()  # svm class   
    clf.fit(train_features, train_labels)  # training the svc model 
    time_3 = time.time()
    print('training cost %f seconds' % (time_3 - time_2))

    print('Start predicting...')
    test_predict=clf.predict(test_features)
    time_4 = time.time()
    print('predicting cost %f seconds' % (time_4 - time_3))

    score = accuracy_score(test_labels, test_predict)
print("The accruacy score is %f" % score)

代码可从这里svm/svm_sklearn.py获取

注:可用拆解法(如OvO,OvR)将svm扩展成适用于多分类问题(其他二分类问题亦可),sklearn中已经实现


运行结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值