《统计学习方法》第1章习题答案

1.1

说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为 0 与 1 的随机变量上的概率分布。假设观测到伯努利模型n 次独立的数据生成结果,其中 k 次的结果为 1,这时可以用极大似然估计或贝叶斯估计来估计结果为 1 的概率。

1)最大似然估计
模型:伯努利分布
策略:风险函数最小化
算法:
∑ i = 1 n x i = k \sum_{i=1}^{n} x_i = k i=1nxi=k
似然函数 L ( x , p ) = p ( x ∣ p ) = ∏ i = 1 n p ( x i ∣ p ) = p k ( 1 − p ) n − k L(x, p)=p(x|p)=\prod_{i=1}^n p(x_i | p) = p^{k} (1 -p)^{n - k} L(x,p)=p(xp)=i=1np(xip)=pk(1p)nk
取对数, l ( x , p ) = ln ⁡ L ( x , p ) = k ln ⁡ p + ( n − k ) ln ⁡ ( 1 − p ) l(x, p) = \ln{L(x, p)} = {k} \ln p + (n - k) \ln {(1 - p)} l(x,p)=lnL(x,p)=klnp+(nk)ln(1p)
求导, ∂ l ∂ p = n − k p − k 1 − p = k − p p ( 1 − p ) = 0 \frac {\partial{l}}{\partial p} = \frac{n - k}{p} - \frac{k}{1 - p} = \frac{k - p}{p(1 - p)} = 0 pl=pnk1pk=p(1p)kp=0
最大似然估计 p ^ = k n = x ˉ \hat{p} = \frac{k}{n} = \bar{x} p^=nk=xˉ
2)贝叶斯估计
模型:贝塔分布
策略:风险函数最小化
算法:
假设 p p p服从 B e t a ( a , b ) Beta(a,b) Beta(a,b)分布
p p p的密度函数为 π ( p ) = τ ( a + b ) τ ( a ) τ ( b ) p a − 1 ( 1 − p ) b − 1 \pi (p) = \frac {\tau (a + b)} {\tau (a) \tau (b)} p^{a - 1} (1 - p)^{b - 1} π(p)=τ(a)τ(b)τ(a+b)pa1(1p)b1
P ( x ∣ p ) = p k ( 1 − p ) n − k P(x|p) = p^{k} (1 -p)^{n - k} P(xp)=pk(1p)nk
联合密度函数 h ( x , p ) = π ( p ) P ( x ∣ p ) = τ ( a + b ) τ ( a ) τ ( b ) p k + a − 1 ( 1 − p ) n + b − k − 1 h(x, p) = \pi (p) P(x|p) = \frac {\tau (a + b)} {\tau (a) \tau (b)} p^{k + a - 1} (1 - p)^{n + b - k - 1} h(x,p)=π(p)P(xp)=τ(a)τ(b)τ(a+b)pk+a1(1p)n+bk1
x x x的边际密度函数 m ( x ) = ∫ 0 1 h ( x , p ) d p = ∫ 0 1 τ ( a + b ) τ ( a ) τ ( b ) p k + a − 1 ( 1 − p ) n + b − k − 1 d p = τ ( a + b ) τ ( a ) τ ( b ) τ ( k + a ) τ ( n + b − k ) τ ( a + b + n ) m(x) = \int_0^1 h(x,p) {\rm d} p = \int_0^1 \frac {\tau (a + b)} {\tau (a) \tau (b)} p^{k + a - 1} (1 - p)^{n + b - k - 1} {\rm d} p = \frac {\tau (a + b)} {\tau (a) \tau (b)} \frac {\tau (k + a) \tau (n + b - k)} {\tau (a + b + n)} m(x)=01h(x,p)dp=01τ(a)τ(b)τ(a+b)pk+a1(1p)n+bk1dp=τ(a)τ(b)τ(a+b)τ(a+b+n)τ(k+a)τ(n+bk)
可得后验概率 π ( p ∣ X ) = τ ( a + b + n ) τ ( k + a ) τ ( n + b − k ) p k + a − 1 ( 1 − p ) n + b − k − 1 \pi (p|X) = \frac {\tau (a + b +n)}{\tau (k + a) \tau (n + b - k)} p^{k + a - 1} (1 - p)^{n + b - k - 1} π(pX)=τ(k+a)τ(n+bk)τ(a+b+n)pk+a1(1p)n+bk1
此时后验概率服从 Beta ( k + a , n + b − k ) (k + a,n + b - k) (k+a,n+bk)分布
f ( p ) = p k + a − 1 ( 1 − p ) n + b − k − 1 f(p) = p^{k + a - 1} (1 - p)^{n + b - k - 1} f(p)=pk+a1(1p)n+bk1, 在 f ′ ( p ) = 0 f'(p) = 0 f(p)=0时得到最优解
求导,得 f ′ ( p ) = p k + a − 2 ( 1 − p ) n + b − k − 2 ( ( k + a − 1 ) ( 1 − p ) − p ( n + b − k − 1 ) ) f'(p) = p^{k + a - 2} (1 - p)^{n + b - k - 2} ((k + a - 1)(1 - p) - p(n + b - k - 1)) f(p)=pk+a2(1p)n+bk2((k+a1)(1p)p(n+bk1))
f ′ ( p ) = 0 f'(p) = 0 f(p)=0,则 ( ( k + a − 1 ) ( p − 1 ) − p ( n + b − k − 1 ) ) = k + a − 1 − p ( n + a + b − 2 ) = 0 ((k + a - 1)(p - 1) - p(n + b - k - 1)) = k + a - 1 - p(n + a +b - 2) = 0 ((k+a1)(p1)p(n+bk1))=k+a1p(n+a+b2)=0
贝叶斯估计是 p ^ = k + a − 1 n + a + b − 2 \hat{p} = \frac {k + a - 1}{n + a +b - 2} p^=n+a+b2k+a1

1.2

通过经验风险最小化推导极大似然估计。证明模型是条件概率分布,当损失函数是对数损失函数时,经验风险最小化等价于极大似然估计。

经验风险最小化即为 min ⁡ 1 N ∑ i = 1 N L ( y i , f ( x i ) ) \min \frac {1} {N} \sum_{i=1}^N L(y_i, f(x_i)) minN1i=1NL(yi,f(xi))
当损失函数是对数损失函数时,上式为 min ⁡ 1 N ( − ln ⁡ f ( x ∣ y ) ) = min ⁡ 1 N ( − ln ⁡ ∏ i = 1 N f ( x i ∣ y i ) ) = min ⁡ 1 N ( − ∑ i = 1 N ln ⁡ f ( x i ∣ y i ) ) = max ⁡ 1 N ∑ i = 1 N ln ⁡ f ( x i ∣ y i ) \min \frac {1} {N} (- \ln { f(x|y)} )= \min \frac {1} {N} (- \ln { \prod_{i = 1}^N f(x_i|y_i)}) = \min \frac {1} {N}(- \sum_{i=1}^N \ln { f(x_i|y_i)}) = \max \frac {1} {N} \sum_{i=1}^N \ln { f(x_i|y_i)} minN1(lnf(xy))=minN1(lni=1Nf(xiyi))=minN1(i=1Nlnf(xiyi))=maxN1i=1Nlnf(xiyi)
最大似然估计的算法是 max ⁡ L ( x , y ) = max ⁡ ∑ i = 1 N f ( x i ∣ y i ) \max L(x,y) = \max \sum_{i=1}^N { f(x_i|y_i)} maxL(x,y)=maxi=1Nf(xiyi)
取对数后则是 max ⁡ ∑ i = 1 N ln ⁡ f ( x i ∣ y i ) \max \sum_{i=1}^N \ln { f(x_i|y_i)} maxi=1Nlnf(xiyi),这是 max ⁡    l ( x ∣ y ) \max \, \, l(x|y) maxl(xy),等价于 max ⁡    L ( x ∣ y ) \max \, \, L(x|y) maxL(xy),即为极大似然估计
因此模型是条件概率分布,当损失函数是对数损失函数时,经验风险最小化等价于极大似然估计

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值