题意:
给出n个区间,现在要你找出一个点集,使得这n个区间都至少有2个元素在这个点集里面,问这个点集最少有几个点。
解析:
差分约束
用sum[i]代表[1,i]这段区间内被选中的点的数量
那么对于[a,b]可以构造不等式
第二个式子是因为[a,b]里面要有2个元素选中,那么[a,b-1]至少要有1个元素被选中
然后对于所有的sum[i],体现他前缀的性质
然后因为a可以到0,所以我就把所有坐标向右移了1单位,那么我们就从0出发,找一边最长路(最小值解)就可以了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 1e4+100;
#define INF 0x3f3f3f3f
typedef struct node
{
int v;
int w;
}node;
vector<node> edge[MAXN];
int vis[MAXN];
int d[MAXN],n;
void spfa(int src)
{
for(int i=0;i<=n;i++) d[i]=-1,vis[i]=0;
d[src]=0;
queue<int> q;
q.push(src);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=0;i<edge[u].size();i++)
{
node x=edge[u][i];
int tmp=d[u]+x.w;
if(d[x.v]<tmp)
{
d[x.v]=tmp;
if(!vis[x.v])
{
vis[x.v]=1;
q.push(x.v);
}
}
}
}
}
int main()
{
int m;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
//a++;
a++;
//b++;
b++;
edge[a-1].push_back(node{b,2});
edge[a-1].push_back(node{b-1,1});
//edge[a-1].push_back(node{b-2,0});
n=max(n,b);
}
for(int i=1;i<=n;i++)
{
edge[i-1].push_back(node{i,0});
}
spfa(0);
printf("%d\n",d[n]);
}