POJ 1716 Integer Intervals(差分约束模板题)

题目链接

题意:

给出n个区间,现在要你找出一个点集,使得这n个区间都至少有2个元素在这个点集里面,问这个点集最少有几个点。

解析:

差分约束

差分约束讲解1

差分约束讲解2

用sum[i]代表[1,i]这段区间内被选中的点的数量

那么对于[a,b]可以构造不等式

sum[b]-sum[a-1]>=2

sum[b-1]-sum[a-1]>=1

第二个式子是因为[a,b]里面要有2个元素选中,那么[a,b-1]至少要有1个元素被选中

然后对于所有的sum[i],体现他前缀的性质

sum[i]-sum[i-1]>=0

然后因为a可以到0,所以我就把所有坐标向右移了1单位,那么我们就从0出发,找一边最长路(最小值解)就可以了。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 1e4+100;
#define INF 0x3f3f3f3f
typedef struct node
{
    int v;
    int w;
}node;

vector<node> edge[MAXN];
int vis[MAXN];
int d[MAXN],n;



void spfa(int src)
{
    for(int i=0;i<=n;i++) d[i]=-1,vis[i]=0;
    d[src]=0;
    queue<int> q;
    q.push(src);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0;
        for(int i=0;i<edge[u].size();i++)
        {
            node x=edge[u][i];
            int tmp=d[u]+x.w;
            if(d[x.v]<tmp)
            {
                d[x.v]=tmp;
                if(!vis[x.v])
                {
                    vis[x.v]=1;
                    q.push(x.v);
                }
            }
        }
    }
}



int main()
{
    int m;
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        //a++;
        a++;
        //b++;
        b++;
        edge[a-1].push_back(node{b,2});
        edge[a-1].push_back(node{b-1,1});
        //edge[a-1].push_back(node{b-2,0});
        n=max(n,b);
    }
    for(int i=1;i<=n;i++)
    {
        edge[i-1].push_back(node{i,0});
    }
    spfa(0);
    printf("%d\n",d[n]);

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值