Lindström–Gessel–Viennot lemma定理 (附 HDU 5852(level 3)(高斯消元求行列式+LGV定理)+牛客多校第一场 A)

Lindström-Gessel-Viennot 定理描述了在特定条件下,矩阵行列式的值等于从起点集合到终点集合的非交叉路径数量。文章通过举例说明了该定理在解决棋盘上移动棋子问题中的应用,并提供了一个具体的编程题目,要求计算在限制路径不相交的情况下,将棋子从起点移动到终点的不同方式数。解决方案涉及高斯消元法求解行列式。
摘要由CSDN通过智能技术生成

 

 

下面是wiki上的讲解,建议耐心地看一遍...虽然看了可能还是不懂

https://en.wikipedia.org/wiki/Lindström–Gessel–Viennot_lemma

Lindström–Gessel–Viennot lemma定理是

起点集合A=(a1,a2,a3..an),终点集合B=(b1.b2,b3,..bn)

假定P是从一条从一个点到另一个点的路径,定义w(P)=路径上经过的边的权值积

 

定义一个n元组P‘=(P1,P2,P3...PN)

Pi: -> 的路径

是{1,2,3,...n}的一种排列(类似于置换群的概念)

 

M行列式所求的值代表...(那句话我也不知道怎么翻译直接看原文吧)

下面这句话就是讲我们真正的用处——当所有边的权值都为1,并且 只有一种排列组合是可以的(即ai->bi)

那么M计算出来的值就是ai->bi不相交路径的方案数。此时e(a,b)就是a->b的合法路径的方案数

 

看了上面你可能还是不懂,其实在实际题目中用一下,你就可以知道他的套路了

 

Intersection is not allowed!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 602    Accepted Submission(s): 195

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值