2-3 实变函数之测度论

2-3 实变函数之测度论

1.外测度

  1. 定义:设 E E E R n R^n Rn中任一点集,对于每一列覆盖 E E E的开区间 ⋃ i = 1 ∞ I i ⊂ E \bigcup_{i=1}^{\infty}I_i\subset E i=1IiE,作出它的体积总和 μ = ∑ i = 1 ∞ ∣ I i ∣ ( μ 可 以 等 于 + ∞ , 不 同 的 区 间 一 般 有 不 同 的 μ ) \mu=\sum_{i=1}^{\infty}|I_i|(\mu可以等于+\infty,不同的区间一般有不同的\mu) μ=i=1Ii(μ+μ),所有这一切 μ \mu μ组成一个有下界的数集,它的下确界(完全由E确定)称为E的勒贝格外测度,简称L外测度或外测度,记为 m ∗ E , m^*E, mE,
    m ∗ E = i n f E ⊂ ∑ i = 1 ∞ I i ∣ I i ∣ m^*E=\underset{E\subset\sum_{i=1}^{\infty}I_i}{inf}|I_i| mE=Ei=1IiinfIi.
  2. 定理
    (1). m ∗ E ≥ 0 , 当 E 为 空 集 时 , 则 m ∗ E = 0 m^*E\geq0,当E为空集时,则m^*E=0 mE0,EmE=0
    (2). 设 A ⊂ B , 则 m ∗ A ≤ m ∗ B 设A\subset B,则m^*A\le m^*B AB,mAmB(单调性)
    (3). m ∗ ( ⋃ i = 1 ∞ A i ) ≤ ∑ i = 1 ∞ m i ∗ m^*(\bigcup_{i=1}^{\infty}A_i)\le \sum_{i=1}^{\infty}m^*_i m(i=1Ai)i=1mi(次可数可加性)
  3. 两个例子
    (1). 空间中可数点集外测度为0;
    proof:取 I i = ( r i − ϵ 2 i + 1 , r i − ϵ 2 i + 1 ) I_i=(r_i-\frac{\epsilon}{2^{i+1}},r_i-\frac{\epsilon}{2^{i+1}}) Ii=(ri2i+1ϵ,ri2i+1ϵ)即可。
    (2). 平面中直线的外测度为0.
    proof:直线可由可数个区间长度为 ϵ \epsilon ϵ的开区间覆盖,而每个开区间的测度为0,由次可数可加性性可得。
    注:a. cantor三分集外测度为0;
    b. 有理数集的外测度为0;

2.可测集

(1). 定义

E 是 R n E是R^n ERn中的点集,如果对任意点集T都有:
m ∗ T = m ∗ ( T ⋂ E ) + m ∗ ( T ⋂ E c ) m^*T=m^*(T\bigcap E)+m^*(T\bigcap E^c) mT=m(TE)+m(TEc)
则称E是可测的,此时E的外测度即为E的测度。

(2). 定理

I . 集 合 E 可 测 的 充 要 条 件 是 对 于 任 意 A ⊂ E , B ⊂ E 总 有 I. 集合E可测的充要条件是对于任意A\subset E,B\subset E总有 I.EAE,BE
m ∗ ( A ⋃ ) B = m ∗ A + m ∗ B m^*(A\bigcup)B=m^*A+m^*B m(A)B=mA+mB.
I I . S 可 测 的 充 要 条 件 是 S c 可 测 II.S可测的充要条件是S^c可测 II.SSc.
I I I . 若 S 1 , S 2 均 可 测 , 则 S 1 ⋃ S 2 也 可 测 , 并 且 当 S 1 ⋂ S 2 ≠ ∅ 时 , 对 于 任 意 集 合 T 总 有 III.若S_1,S_2均可测,则S_1\bigcup S_2也可测,并且当S_1\bigcap S_2\neq\empty 时,对于任意集合T总有 III.S1,S2S1S2S1S2=T
m ∗ ( T ⋂ ( S 1 ⋃ S 2 ) ) = m ∗ ( T ⋂ S 1 ) + m ∗ ( T ⋂ S 2 ) m^*(T\bigcap (S_1\bigcup S_2))=m^*(T\bigcap S_1)+m^*(T\bigcap S_2) m(T(S1S2))=m(TS1)+m(TS2).
I V . 若 S 1 , S 2 均 可 测 , 则 S 1 ⋂ S 2 也 可 测 . IV.若S_1,S_2均可测,则S_1\bigcap S_2也可测. IV.S1,S2S1S2.
V . 若 S 1 , S 2 均 可 测 , 则 S 1 − S 2 也 可 测 . V.若S_1,S_2均可测,则S_1- S_2也可测. V.S1,S2S1S2.
V I . 设 { S i } 是 一 列 互 不 相 交 的 可 测 集 , 则 ⋃ i = i ∞ S i 也 是 可 测 集 , 且 VI.设\{S_i\}是一列互不相交的可测集,则\bigcup_{i=i}^{\infty}S_i也是可测集,且 VI.{Si}i=iSi
m ( ⋃ i = i ∞ S i = ∑ i = 1 ∞ m S i m(\bigcup_{i=i}^{\infty}S_i=\sum_{i=1}^{\infty}mS_i m(i=iSi=i=1mSi
V I I . 设 { S i } 是 一 列 可 测 集 , 则 ⋂ i = i ∞ S i 也 是 可 测 集 VII.设\{S_i\}是一列可测集,则\bigcap_{i=i}^{\infty}S_i也是可测集 VII.{Si}i=iSi

3.可测集类

定理1.
(1). 凡外测度为0之集皆可测,称为零测度集。
(2).零测度集之任何子集仍为零测度集。
(3). 有限个或可数个零测度集之和仍为零测度集。
定理2: 区 间 I ( 无 论 开 闭 ) 都 是 可 测 集 和 , 且 m ∗ I = ∣ I ∣ 区间I(无论开闭)都是可测集和,且m^*I=|I| ImI=I.
定理3:凡开集闭集皆可测。
定理4:凡博雷尔集皆 L L L可测.
注 1 : 设 Ω 是 R n 中 某 些 集 合 组 成 的 集 合 类 如 果 R n ∈ Ω , 并 且 Ω 注1:设\Omega是R^n中某些集合组成的集合类如果R^n\in \Omega,并且\Omega 1ΩRnRnΩ,Ω对于可数并及做差运算(由德摩根公式是对可数交及取余运算)是封闭的,则称 Ω 为 R n 上 的 一 个 σ 代 数 。 \Omega为R^n上的一个\sigma代数。 ΩRnσ
注 2 : 设 ∑ 是 R n 中 某 些 集 合 组 成 的 集 族 , 称 R n 上 包 含 ∑ 的 σ 注2:设\sum是R^n中某些集合组成的集族,称R^n上包含\sum的\sigma 2RnRnσ代数为由 ∑ 生 成 的 σ 代 数 。 \sum生成的\sigma代数。 σ

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值