7-1 小波分析之傅里叶分析

7-1 小波分析之傅里叶分析

1.线性时不变滤波

\qquad 一个算子 L L L的时移不变性是指:如果输入的信号 f ( t ) f(t) f(t)延迟 τ \tau τ个单位成为 f τ ( t ) = f ( t − τ ) f_\tau(t)=f(t-\tau) fτ(t)=f(tτ)则输出信号也延时 τ \tau τ个单位,即 g ( t ) = L f ( t )    ⟹    g ( t − τ ) = L f τ ( t ) g(t)=Lf(t)\implies g(t-\tau)=Lf_\tau(t) g(t)=Lf(t)g(tτ)=Lfτ(t)

2.Fourier积分

2.1 L 1 ( R ) L^1(R) L1(R)上的傅里叶变换

  • L 1 ( R ) L^1(R) L1(R)上的傅里叶变换
    \qquad 傅里叶积分定义为 f ^ ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t \hat f(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt f^(ω)=f(t)eiωtdt它的意义是度量 f f f在频率 ω \omega ω处的震荡信息。
  • L 1 ( R ) L^1(R) L1(R)上的傅里叶逆变换
    \qquad 如果 f ∈ L 1 ( R ) f\in L^1(R) fL1(R), f ^ ∈ L 1 ( R ) \hat{f}\in L^1(R) f^L1(R) f ( t ) = 1 2 π ∫ − ∞ ∞ f ^ ( ω ) e i ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat f(\omega)e^{i\omega t}d\omega f(t)=2π1f^(ω)eiωtdω
  • 卷积
    f ∗ g ( t ) = ∫ − ∞ + ∞ f ( u ) g ( t − u ) d u f*g(t)=\int_{-\infty}^{+\infty}f(u)g(t-u)du fg(t)=+f(u)g(tu)du
    性质:
  1. 可交换性: f ∗ g = g ∗ f f*g=g*f fg=gf
  2. 微分性: d d t ( f ∗ g ) ( t ) = d f d t ∗ g ( t ) = f ( t ) ∗ d g d t \frac{d}{dt}(f*g)(t)=\frac{df}{dt}*g(t)=f(t)*\frac{dg}{dt} dtd(fg)(t)=dtdfg(t)=f(t)dtdg
  3. Dirac卷积: f ∗ δ τ ( t ) = f ( t − τ ) f*\delta_\tau(t)=f(t-\tau) fδτ(t)=f(tτ)
  • Fourier变换与卷积
    \qquad f ∈ L 1 ( R ) , h ∈ L 1 ( R ) f\in L^1(R),h\in L^1(R) fL1(R),hL1(R),则 g = h ∗ f ∈ L 1 ( R ) g=h*f\in L^1(R) g=hfL1(R) g ^ ( ω ) = h ^ ( ω ) f ^ ( ω ) \hat g(\omega)=\hat h(\omega)\hat f(\omega) g^(ω)=h^(ω)f^(ω).
    证明: g ^ ( ω ) = ∫ − ∞ + ∞ g ( t ) e − i ω t d t = ∫ − ∞ + ∞ ( ∫ − ∞ + ∞ f ( t − u ) h ( u ) d u ) e − i ω t d t \hat g(\omega)=\int_{-\infty}^{+\infty}g(t)e^{-i\omega t}dt=\int_{-\infty}^{+\infty}(\int_{-\infty}^{+\infty}f(t-u)h(u)du)e^{-i\omega t}dt g^(ω)=+g(t)eiωtdt=+(+f(tu)h(u)du)eiωtdt又因为 f , h f,h f,h均可积,故积分可换续,令 u = u , v = t − u u=u,v=t-u u=u,v=tu ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − i ( u + v ) ω f ( v ) h ( u ) d u d v = ( ∫ − ∞ ∞ f ( v ) e − i ω v d v ) ( ∫ − ∞ ∞ h ( u ) e − i ω u d u ) \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}e^{-i(u+v)\omega }f(v)h(u)dudv=(\int_{-\infty}^{\infty}f(v)e^{-i\omega v}dv)(\int_{-\infty}^{\infty}h(u)e^{-i\omega u}du) ++ei(u+v)ωf(v)h(u)dudv=(f(v)eiωvdv)(h(u)eiωudu)
    证毕
  • Fourier变换的性质
    在这里插入图片描述

2.2 L 2 ( R ) L^2(R) L2(R)上的傅里叶变换

  • L 2 ( R ) L^2(R) L2(R)上特征函数的傅里叶变换
    [ − 1 , 1 ] \qquad[-1,1] [1,1]上的特征函数的傅里叶变换为 f ^ ( ω ) = ∫ − 1 1 e − i ω t d t = 2 s i n ω ω \hat f(\omega)=\int_{-1}^{1}e^{-i\omega t}dt=\frac{2sin\omega}{\omega} f^(ω)=11eiωtdt=ω2sinω
    证明: ∫ − ∞ + ∞ e − i ω t d t = − 1 i ω e − i ω t ∣ − 1 1 = − 1 i ω e − i ω + 1 i ω e i ω = 2 s i n ω ω \int_{-\infty}^{+\infty}e^{-i\omega t}dt=-\frac{1}{i\omega}e^{-i\omega t}|_{-1}^1=-\frac{1}{i\omega}e^{-i\omega }+\frac{1}{i\omega}e^{i\omega }=\frac{2sin\omega}{\omega} +eiωtdt=iω1eiωt11=iω1eiω+iω1eiω=ω2sinω证毕
  • P a r s a e v a l Parsaeval Parsaeval等式及 P l a n c h e r e l Plancherel Plancherel等式
    \qquad f , h ∈ L 1 ( R ) ∩ L 2 ( R ) f,h\in L_1(R)\cap L_2(R) f,hL1(R)L2(R),则 ∫ − ∞ + ∞ f ( t ) g ∗ ( t ) d t = 1 2 π ∫ − ∞ + ∞ f ^ ( ω ) g ^ ∗ ( ω ) d ω \int_{-\infty}^{+\infty}f(t)g^*(t)dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\hat f(\omega)\hat g^*(\omega)d\omega +f(t)g(t)dt=2π1+f^(ω)g^(ω)dω,对于 h = f h=f h=f则有 ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ f ^ ( ω ) ∣ 2 d ω \int_{-\infty}^{+\infty}\vert f(t)\vert ^2dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\vert \hat f(\omega)\vert ^2d\omega +f(t)2dt=2π1+f^(ω)2dω
  • 脉冲响应
    \qquad 理想的低通滤波器有传递函数 ϕ ^ = 1 [ − ξ , ξ ] \hat\phi=1_{[-\xi,\xi]} ϕ^=1[ξ,ξ],它截取低频 [ − ξ , ξ ] [-\xi,\xi] [ξ,ξ]的信息。由逆傅里叶积分可得 ϕ ξ ( t ) = 1 2 π ∫ − ξ + ξ e − i ω t d t = s i n ( ξ t ) π t (1) \phi_\xi(t)=\frac{1}{2\pi}\int_{-\xi}^{+\xi}e^{-i\omega t}dt=\frac{sin(\xi t)}{\pi t}\tag1 ϕξ(t)=2π1ξ+ξeiωtdt=πtsin(ξt)(1)
  • 高斯函数的傅里叶变换
    \qquad 高斯函数的傅里叶变换也是高斯函数, f ( t ) = e − t 2 , f ^ ( ω ) = π e − ω 2 4 f(t)=e^{-t^2},\hat f(\omega)=\sqrt\pi e^{-\frac{\omega^2}{4}} f(t)=et2,f^(ω)=π e4ω2

2.3 性质

  • 正则性与衰减性
    \qquad 如果 f f f满足 ∫ − ∞ + ∞ ∣ f ^ ( ω ) ∣ ( 1 + ∣ ω ∣ p ) d ω < + ∞ \int_{-\infty}^{+\infty}|\hat f(\omega)|(1+|\omega|^p)d\omega<+\infty +f^(ω)(1+ωp)dω<+则函数 f f f是有界函数,且 p p p次连续可微、导数有界。
    \qquad 这个结果也证明,若存在常数 K K K ϵ > 0 \epsilon>0 ϵ>0使得 ∣ f ^ ( ω ) ∣ < K 1 + ∣ ω ∣ p + 1 + ϵ |\hat f(\omega)|<\frac{K}{1+|\omega|^{p+1+\epsilon}} f^(ω)<1+ωp+1+ϵK f ∈ C p f\in C^p fCp.
  • 测不准原理
    \qquad 我们知道只有当 f f f在时域上变化缓慢时, ∣ f ^ ( ω ) ∣ |\hat f(\omega)| f^(ω)才会在高频快速衰减。因此当 f ^ \hat f f^的能量分散在所有频率上时 f f f也必须分散在相对宽的时间域上。
    Heisenberg测不准原理 f ∈ L 2 ( R ) f\in L^2(R) fL2(R)的时频变差满足如下不等式 σ t 2 σ ω 2 ≥ 1 4 \sigma_t^2\sigma_\omega^2\geq\frac{1}{4} σt2σω241其中等号成立当且仅当存在 ( u , ξ , a , b ) ∈ R 2 × C 2 (u,\xi,a,b)\in R^2\times C^2 (u,ξ,a,b)R2×C2,使得 f ( t ) = a e i ξ t − b ( t − u ) 2 f(t)=ae^{i\xi t-b(t-u)^2} f(t)=aeiξtb(tu)2.
    注: σ t 2 = 1 ∣ ∣ f ∣ ∣ 2 ∫ − ∞ + ∞ ( t − u ) 2 ∣ f ( t ) ∣ 2 d t \sigma_t^2=\frac{1}{||f||^2}\int_{-\infty}^{+\infty}(t-u)^2\vert f(t)\vert ^2dt σt2=f21+(tu)2f(t)2dt, σ ω 2 = 1 2 π ∣ ∣ f ∣ ∣ 2 ∫ − ∞ + ∞ ( ω − ξ ) 2 ∣ f ^ ( ω ) ∣ 2 d ω \qquad \sigma_{\omega}^2=\frac{1}{2\pi||f||^2}\int_{-\infty}^{+\infty}(\omega-\xi)^2\vert \hat f(\omega)\vert ^2d\omega σω2=2πf21+(ωξ)2f^(ω)2dω
    证明:
    在这里插入图片描述
    在这里插入图片描述
  • Gibbs震荡
    \qquad 对任意 ξ > 0 , \xi>0, ξ>0, u ∗ ϕ ξ ( t ) = ∫ − ∞ ξ t s i n x π x d x u*\phi_\xi(t)=\int_{-\infty}^{\xi t}\frac{sinx}{\pi x}dx uϕξ(t)=ξtπxsinxdx
    证明: ( 1 ) (1) (1)可得理想低通脉冲响应为 ϕ ξ ( t ) = s i n ξ t π t \phi_\xi(t)=\frac{sin\xi t}{\pi t} ϕξ(t)=πtsinξt,因此 u ∗ ϕ ξ ( t ) = ∫ − ∞ + ∞ u ( τ ) s i n ξ ( t − τ ) π ( t − τ ) d τ = ∫ 0 + ∞ s i n ξ ( t − τ ) π ( t − τ ) d τ (2) u*\phi_\xi(t)=\int_{-\infty}^{+\infty}u(\tau)\frac{sin\xi(t-\tau)}{\\\pi(t-\tau)}d\tau=\int_{0}^{+\infty}\frac{sin\xi(t-\tau)}{\\\pi(t-\tau)}d\tau\tag2 uϕξ(t)=+u(τ)π(tτ)sinξ(tτ)dτ=0+π(tτ)sinξ(tτ)dτ(2)
    其中 u ( t ) = { 1 , if  t ≥ 0 0 , e l s e u(t)= \begin{cases} 1, & \text{if $t\geq0$} \\ 0, & \text{$else$} \\ \end{cases} u(t)={1,0,if t0else
    x = ξ ( t − τ ) x=\xi(t-\tau) x=ξ(tτ) u ∗ ϕ ξ ( t ) = ∫ − ∞ ξ t sin ⁡ x π x d x u*\phi_\xi(t)=\int_{-\infty}^{\xi t}\frac{\sin x}{\pi x}dx uϕξ(t)=ξtπxsinxdx证毕.
  • 图像的全变差
  1. 全变差:若 f f f可微,它的全变差定义为 ∥ f ∥ V = ∫ − ∞ + ∞ ∣ f ′ ( t ) ∣ d t \Vert f\Vert_V=\int_{-\infty}^{+\infty}\vert f'(t)\vert dt fV=+f(t)dt如果 { x p } p \{x_p\}_p {xp}p满足 f ′ ( x p ) = 0 f'(x_p)=0 f(xp)=0 { x p } p \{x_p\}_p {xp}p f f f的局部极值点集合,则有 ∥ f ∥ V = ∑ p ∣ ( f ( x p + 1 ) − f ( x p ) ) ∣ \Vert f\Vert_V=\sum_p\vert (f(x_{p+1})-f(x_p))\vert fV=p(f(xp+1)f(xp))它测量了 f f f的整体震荡幅度。
  2. 图像全变差:假设 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2)可微,它的全变为 ∥ f ∥ V = ∫ ∫ ∣ ∇ → f ( x 1 , x 2 ) ∣ d x 1 d x 2 \Vert f\Vert_V=\int\int\vert \overset\to\nabla f(x_1,x_2)\vert dx_1dx_2 fV=f(x1,x2)dx1dx2此处梯度向量的模定义为 ∣ ∇ → f ( x 1 , x 2 ) ∣ = ( ∣ ∂ f ( x 1 , x 2 ) ∂ x 1 ∣ 2 + ∣ ∂ f ( x 1 , x 2 ) ∂ x 2 ∣ 2 ) 1 2 \vert \overset\to\nabla f(x_1,x_2)\vert=(\vert\frac{\partial f(x_1,x_2)}{\partial x_1}\vert^2+\vert\frac{\partial f(x_1,x_2)}{\partial x_2}\vert^2)^\frac{1}{2} f(x1,x2)=(x1f(x1,x2)2+x2f(x1,x2)2)21.

2.4 二维傅里叶变换

R n \qquad R^n Rn上的傅里叶变换是一维情况下的推广。为了图像处理的应用需要,我们做简单的回顾:二维傅里叶变换的积分为 f ^ ( ω 1 , ω 2 ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x 1 , x 2 ) e − i ω 1 x 1 − i ω 2 x 2 d x 1 d x 2 \hat f(\omega_1,\omega_2)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x_1,x_2)e^{-i\omega_1x_1-i\omega_2x_2}dx_1dx_2 f^(ω1,ω2)=++f(x1,x2)eiω1x1iω2x2dx1dx2在极坐标下, e i ω 1 x 1 + i ω 2 x 2 e^{i\omega_1x_1+i\omega_2x_2} eiω1x1+iω2x2可表示为 e i ξ ( x 1 c o s θ + x 2 s i n θ ) e^{i\xi (x_1cos\theta+x_2sin\theta)} eiξ(x1cosθ+x2sinθ)其中 ξ = ω 1 2 + ω 2 2 \xi=\sqrt {\omega_1^2+\omega_2^2} ξ=ω12+ω22 .可见 e i ξ ( x 1 c o s θ + x 2 s i n θ ) e^{i\xi (x_1cos\theta+x_2sin\theta)} eiξ(x1cosθ+x2sinθ)是沿着 θ \theta θ传播、以 ξ \xi ξ频率震荡的平面波。

  • 二维性质
    x = ( x 1 , x 2 ) , ω = ( ω 1 , ω 2 ) , f ( x ) = f ( x 1 , x 2 ) x=(x_1,x_2),\omega=(\omega_1,\omega_2),f(x)=f(x_1,x_2) x=(x1,x2),ω=(ω1,ω2),f(x)=f(x1,x2)
  1. f , f ^ ∈ L 1 ( R 2 ) f,\hat f\in L^1(R^2) f,f^L1(R2) f ( x ) = 1 4 π 2 ∫ ∫ f ^ ( ω ) e − i ω ⋅ x d ω f(x)=\frac{1}{4\pi^2}\int\int\hat f(\omega)e^{-i\omega\cdot x}d\omega f(x)=4π21f^(ω)eiωxdω.
  2. 卷积: f , h ∈ L 1 ( R 2 ) f,h\in L^1(R^2) f,hL1(R2) g ( x ) = f ∗ h ( x ) = ∫ − ∞ + ∞ f ( u ) ⋅ g ( x − u ) d u g(x)=f*h(x)=\int_{-\infty}^{+\infty}f(u)\cdot g(x-u)du g(x)=fh(x)=+f(u)g(xu)du的傅里叶变换满足 g ^ ( ω ) = f ^ ( ω ) h ^ ( ω ) \hat g(\omega)=\hat f(\omega)\hat h(\omega) g^(ω)=f^(ω)h^(ω)
  3. parseval
    ∫ ∫ f ( x ) g ∗ ( x ) d x = 1 4 π 2 ∫ ∫ f ^ ( ω ) g ^ ∗ ( ω ) d ω \int\int f(x)g^*(x)dx=\frac{1}{4\pi^2}\int\int\hat f(\omega)\hat g^*(\omega)d\omega f(x)g(x)dx=4π21f^(ω)g^(ω)dω f = g f=g f=g则上式为: ∫ ∫ ∣ f ( x ) ∣ 2 d x = 1 4 π 2 ∫ ∫ ∣ f ^ ( ω ) ∣ 2 d ω \int\int\vert f(x)\vert^2dx=\frac{1}{4\pi^2}\int\int\vert\hat f(\omega)\vert^2d\omega f(x)2dx=4π21f^(ω)2dω
  4. 如果 f ( x ) f(x) f(x)旋转 θ \theta θ, f θ ( x 1 , x 2 ) = f ( x 1 c o s θ − x 2 s i n θ , x 1 s i n θ + x 2 c o s θ ) f_\theta(x_1,x_2)=f(x_1cos\theta-x_2sin\theta,x_1sin\theta+x_2cos\theta) fθ(x1,x2)=f(x1cosθx2sinθ,x1sinθ+x2cosθ) f θ f_\theta fθ的傅里叶变换也旋转 θ \theta θ, f ^ θ ( ω ) = f ^ ( ω 1 c o s θ − ω 2 s i n θ , ω 1 s i n θ + ω 2 c o s θ ) \hat f_\theta(\omega)=\hat f(\omega_1cos\theta-\omega_2sin\theta,\omega_1sin\theta+\omega_2cos\theta) f^θ(ω)=f^(ω1cosθω2sinθ,ω1sinθ+ω2cosθ)
    .
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值